Robust fitting of mixtures of factor analyzers using the trimmed likelihood estimator

被引:4
|
作者
Yang, Li [1 ]
Xiang, Sijia [2 ]
Yao, Weixin [3 ]
机构
[1] Kansas State Univ, Dept Stat, Manhattan, KS 66506 USA
[2] Zhejiang Univ Finance & Econ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China
[3] Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USA
关键词
EM algorithm; Factor analysis; Mixture models; Robustness; Trimmed likelihood estimator; ADAPTIVE CHOICE; FINITE MIXTURES;
D O I
10.1080/03610918.2014.999088
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Mixtures of factor analyzers (MFAs) have been popularly used to cluster the high-dimensional data. However, the traditional estimation method is based on the normality assumptions of random terms and thus is sensitive to outliers. In this article, we introduce a robust estimation procedure of MFAs using the trimmed likelihood estimator. We use a simulation study and a real data application to demonstrate the robustness of the trimmed estimation procedure and compare it with the traditional normality-based maximum likelihood estimate.
引用
收藏
页码:1280 / 1291
页数:12
相关论文
共 50 条
  • [31] Penalized maximum likelihood estimator for normal mixtures
    Ciuperca, G
    Ridolfi, A
    Idier, J
    SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (01) : 45 - 59
  • [32] Maximum Kernel Density Estimator for robust fitting
    Wang, Hanzi
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3385 - 3388
  • [33] Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator
    Neykov, N. M.
    Filzmoser, P.
    Neytchev, P. N.
    STATISTICAL PAPERS, 2014, 55 (01) : 187 - 207
  • [34] Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator
    N. M. Neykov
    P. Filzmoser
    P. N. Neytchev
    Statistical Papers, 2014, 55 : 187 - 207
  • [35] AMSAC: AN ADAPTIVE ROBUST ESTIMATOR FOR MODEL FITTING
    Wang, Hanzi
    Cai, Jinlong
    Tang, Jianyu
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 305 - 309
  • [36] MIXTURES OF FACTOR ANALYZERS AND DEEP MIXTURES OF FACTOR ANALYZERS DIMENSIONALITY REDUCTION ALGORITHMS FOR HYPERSPECTRAL IMAGES CLASSIFICATION
    Zhao, Bin
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Chanussot, Jocelyn
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 891 - 894
  • [37] Mixtures of robust probabilistic principal component analyzers
    Archambeau, Cedric
    Delannay, Nicolas
    Verleysen, Michel
    NEUROCOMPUTING, 2008, 71 (7-9) : 1274 - 1282
  • [38] Mixtures of factor analyzers:: an extension with covariates
    Fokoué, E
    JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (02) : 370 - 384
  • [39] Image Segmentation Using a Trimmed Likelihood Estimator in the Asymmetric Mixture Model Based on Generalized Gamma and Gaussian Distributions
    Zhou, Yi
    Zhu, Hongqing
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [40] Bayesian analysis of mixtures of factor analyzers
    Utsugi, A
    Kumagai, T
    NEURAL COMPUTATION, 2001, 13 (05) : 993 - 1002