Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator

被引:0
|
作者
N. M. Neykov
P. Filzmoser
P. N. Neytchev
机构
[1] Bulgarian Academy of Sciences,National Institute of Meteorology and Hydrology
[2] Vienna University of Technology,Department of Statistics and Probability Theory
来源
Statistical Papers | 2014年 / 55卷
关键词
Multiple linear regression; Poisson regression; Robust variable screening; Breakdown point; Outlier detection; Maximum penalized trimmed likelihood estimator;
D O I
暂无
中图分类号
学科分类号
摘要
The penalized maximum likelihood estimator (PMLE) has been widely used for variable selection in high-dimensional data. Various penalty functions have been employed for this purpose, e.g., Lasso, weighted Lasso, or smoothly clipped absolute deviations. However, the PMLE can be very sensitive to outliers in the data, especially to outliers in the covariates (leverage points). In order to overcome this disadvantage, the usage of the penalized maximum trimmed likelihood estimator (PMTLE) is proposed to estimate the unknown parameters in a robust way. The computation of the PMTLE takes advantage of the same technology as used for PMLE but here the estimation is based on subsamples only. The breakdown point properties of the PMTLE are discussed using the notion of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-fullness. The performance of the proposed estimator is evaluated in a simulation study for the classical multiple linear and Poisson linear regression models.
引用
收藏
页码:187 / 207
页数:20
相关论文
共 50 条
  • [1] Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator
    Neykov, N. M.
    Filzmoser, P.
    Neytchev, P. N.
    [J]. STATISTICAL PAPERS, 2014, 55 (01) : 187 - 207
  • [2] Erratum to: Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator
    N. M. Neykov
    P. Filzmoser
    P. N. Neytchev
    [J]. Statistical Papers, 2014, 55 : 917 - 918
  • [3] Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator (vol 55, pg 187, 2014)
    Neykov, N. M.
    Filzmoser, P.
    Neytchev, P. N.
    [J]. STATISTICAL PAPERS, 2014, 55 (03) : 917 - 918
  • [4] Penalized composite quasi-likelihood for ultrahigh dimensional variable selection
    Bradic, Jelena
    Fan, Jianqing
    Wang, Weiwei
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 325 - 349
  • [5] PENALIZED MAXIMUM LIKELIHOOD ESTIMATION AND VARIABLE SELECTION IN GEOSTATISTICS
    Chu, Tingjin
    Zhu, Jun
    Wang, Haonan
    [J]. ANNALS OF STATISTICS, 2011, 39 (05): : 2607 - 2625
  • [6] Penalized maximum likelihood estimator for normal mixtures
    Ciuperca, G
    Ridolfi, A
    Idier, J
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (01) : 45 - 59
  • [7] A model where the least trimmed squares estimator is maximum likelihood
    Berenguer-Rico, Vanessa
    Johansen, Soren
    Nielsen, Bent
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (03) : 886 - 912
  • [8] Regularization parameter selection for penalized empirical likelihood estimator
    Ando, Tomohiro
    Sueishi, Naoya
    [J]. ECONOMICS LETTERS, 2019, 178 : 1 - 4
  • [9] Variable selection using penalized empirical likelihood
    REN YunWen 1
    2 Department of Statistics
    [J]. Science China Mathematics, 2011, 54 (09) : 1829 - 1845
  • [10] Variable selection using penalized empirical likelihood
    YunWen Ren
    XinSheng Zhang
    [J]. Science China Mathematics, 2011, 54 : 1829 - 1845