Regularization parameter selection for penalized empirical likelihood estimator

被引:1
|
作者
Ando, Tomohiro [1 ]
Sueishi, Naoya [2 ]
机构
[1] Univ Melbourne, Melbourne Business Sch, 200 Leicester St, Carlton, Vic 3053, Australia
[2] Kobe Univ, Grad Sch Econ, Nada Ku, 2-1 Rokkodai Cho, Kobe, Hyogo 6578501, Japan
关键词
Information criterion; Variable selection; VARIABLE SELECTION; MODEL SELECTION; REGRESSION; SHRINKAGE; CRITERIA; LASSO; ORDER;
D O I
10.1016/j.econlet.2019.02.011
中图分类号
F [经济];
学科分类号
02 ;
摘要
Penalized estimation is a useful technique for variable selection when the number of candidate variables is large. A crucial issue in penalized estimation is the selection of the regularization parameter because the performance of the estimator largely depends on an appropriate choice. However, no theoretically sound selection method currently exists for the penalized estimation of moment restriction models. To address this important issue, we develop a novel information criterion, which we call the empirical likelihood information criterion, to select the regularization parameter of the penalized empirical likelihood estimator. The information criterion is derived as an estimator of the expected value of the Kullback-Leibler information criterion from an estimated model to the true data generating process. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [1] Efficiency for Regularization Parameter Selection in Penalized Likelihood Estimation Of Misspecified Models
    Flynn, Cheryl J.
    Hurvich, Clifford M.
    Simonoff, Jeffrey S.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 1031 - 1043
  • [2] Regularization parameter selection for penalized-likelihood list-mode image reconstruction in PET
    Zhang, Mengxi
    Zhou, Jian
    Niu, Xiaofeng
    Asma, Evren
    Wang, Wenli
    Qi, Jinyi
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (12): : 5114 - 5130
  • [3] Variable selection using penalized empirical likelihood
    REN YunWen 1
    2 Department of Statistics
    [J]. Science China Mathematics, 2011, 54 (09) : 1829 - 1845
  • [4] Variable selection using penalized empirical likelihood
    YunWen Ren
    XinSheng Zhang
    [J]. Science China Mathematics, 2011, 54 : 1829 - 1845
  • [5] Variable selection using penalized empirical likelihood
    Ren YunWen
    Zhang XinSheng
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (09) : 1829 - 1845
  • [6] On the Convergence Rate of the SCAD-Penalized Empirical Likelihood Estimator
    Ando, Tomohiro
    Sueishi, Naoya
    [J]. ECONOMETRICS, 2019, 7 (01)
  • [7] Tuning parameter selection for a penalized estimator of species richness
    Paynter, Alex
    Willis, Amy D.
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (06) : 1053 - 1070
  • [8] MONTE CARLO SURE-BASED REGULARIZATION PARAMETER SELECTION FOR PENALIZED-LIKELIHOOD IMAGE RECONSTRUCTION
    Zhou, Jian
    Qi, Jinyi
    [J]. 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, : 1095 - 1098
  • [9] Tuning parameter selection in high dimensional penalized likelihood
    Fan, Yingying
    Tang, Cheng Yong
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (03) : 531 - 552
  • [10] Moment Conditions Selection Based on Adaptive Penalized Empirical Likelihood
    Song, Yunquan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,