Tuning parameter selection for a penalized estimator of species richness

被引:0
|
作者
Paynter, Alex [1 ]
Willis, Amy D. [1 ]
机构
[1] Univ Washington, Dept Biostat, Hlth Sci Bldg,Box 357232,1705 NE Pacific St, Seattle, WA 98195 USA
关键词
Diversity; regularization; maximum likelihood; ecology; microbiome; NUMBER; DIVERSITY; SIZE;
D O I
10.1080/02664763.2020.1754359
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Our goal is to estimate the true number of classes in a population, called the species richness. We consider the case where multiple frequency count tables have been collected from a homogeneous population and investigate a penalized maximum likelihood estimator under a negative binomial model. Because high probabilities of unobserved classes increase the variance of species richness estimates, our method penalizes the probability of a class being unobserved. Tuning the penalization parameter is challenging because the true species richness is never known, and so we propose and validate four novel methods for tuning the penalization parameter. We illustrate and contrast the performance of the proposed methods by estimating the strain-level microbial diversity of Lake Champlain over three consecutive years, and global human host-associated species-level microbial richness.
引用
收藏
页码:1053 / 1070
页数:18
相关论文
共 50 条
  • [1] Tuning Parameter Selection in Penalized Frailty Models
    Androulakis, E.
    Koukouvinos, C.
    Vonta, F.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (05) : 1538 - 1553
  • [2] Regularization parameter selection for penalized empirical likelihood estimator
    Ando, Tomohiro
    Sueishi, Naoya
    [J]. ECONOMICS LETTERS, 2019, 178 : 1 - 4
  • [3] Assessing Tuning Parameter Selection Variability in Penalized Regression
    Hu, Wenhao
    Laber, Eric B.
    Barker, Clay
    Stefanski, Leonard A.
    [J]. TECHNOMETRICS, 2019, 61 (02) : 154 - 164
  • [4] Tuning parameter selection in high dimensional penalized likelihood
    Fan, Yingying
    Tang, Cheng Yong
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (03) : 531 - 552
  • [5] TUNING PARAMETER SELECTION FOR PENALIZED LIKELIHOOD ESTIMATION OF GAUSSIAN GRAPHICAL MODEL
    Gao, Xin
    Pu, Daniel Q.
    Wu, Yuehua
    Xu, Hong
    [J]. STATISTICA SINICA, 2012, 22 (03) : 1123 - 1146
  • [6] Tuning parameter selection in penalized generalized linear models for discrete data
    Androulakis, E.
    Koukouvinos, C.
    Vonta, F.
    [J]. STATISTICA NEERLANDICA, 2014, 68 (04) : 276 - 292
  • [7] Tuning parameter selection for penalized estimation via R2
    Holter, Julia C.
    Stallrich, Jonathan W.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 183
  • [8] On the Selection of the Tuning Parameter of a Moment Estimator of the Extreme Value Index
    Caeiro, Frederico
    Ivette Gomes, M.
    [J]. 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 801 - 804
  • [9] Consistent tuning parameter selection in high-dimensional group-penalized regression
    Yaguang Li
    Yaohua Wu
    Baisuo Jin
    [J]. Science China Mathematics, 2019, 62 (04) : 751 - 770
  • [10] Consistent tuning parameter selection in high-dimensional group-penalized regression
    Yaguang Li
    Yaohua Wu
    Baisuo Jin
    [J]. Science China Mathematics, 2019, 62 : 751 - 770