TUNING PARAMETER SELECTION FOR PENALIZED LIKELIHOOD ESTIMATION OF GAUSSIAN GRAPHICAL MODEL

被引:28
|
作者
Gao, Xin [1 ]
Pu, Daniel Q. [1 ]
Wu, Yuehua [1 ]
Xu, Hong [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 2R7, Canada
关键词
BIC; consistency; cross validation; Gaussian graphical model; model selection; oracle property; penalized likelihood; COVARIANCE ESTIMATION; VARIABLE SELECTION; LASSO;
D O I
10.5705/ss.2009.210
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a Gaussian graphical model, the conditional independence between two variables are characterized by the corresponding zero entries in the inverse covariance matrix. Maximum likelihood method using the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li (2001)) has been proposed in the literature. In this article, we establish the result that when p is fixed, using the Bayesian information criterion (BIG) to select the tuning parameter in penalized likelihood estimation with the SCAD penalty can lead to consistent graphical model selection. When p increases with the sample size, a modified BIC with an extra penalty term is proposed. It can consistently select the true graphical model under the condition that p tends to infinity and all the true edges are included in a bounded subset. We compare the empirical performance of BIC with the cross validation method and demonstrate the advantageous performance of BIC criterion for sparse graphical models through simulation studies.
引用
收藏
页码:1123 / 1146
页数:24
相关论文
共 50 条
  • [1] Selecting the tuning parameter in penalized Gaussian graphical models
    Abbruzzo, Antonino
    Vujacic, Ivan
    Mineo, Angelo M.
    Wit, Ernst C.
    [J]. STATISTICS AND COMPUTING, 2019, 29 (03) : 559 - 569
  • [2] Selecting the tuning parameter in penalized Gaussian graphical models
    Antonino Abbruzzo
    Ivan Vujačić
    Angelo M. Mineo
    Ernst C. Wit
    [J]. Statistics and Computing, 2019, 29 : 559 - 569
  • [3] Tuning parameter selection in high dimensional penalized likelihood
    Fan, Yingying
    Tang, Cheng Yong
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (03) : 531 - 552
  • [4] Optimal tuning parameter estimation in maximum penalized likelihood method
    Ueki, Masao
    Fueda, Kaoru
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (03) : 413 - 438
  • [5] Optimal tuning parameter estimation in maximum penalized likelihood method
    Masao Ueki
    Kaoru Fueda
    [J]. Annals of the Institute of Statistical Mathematics, 2010, 62 : 413 - 438
  • [6] Penalized Maximum Likelihood Estimation of Multi-layered Gaussian Graphical Models
    Lin, Jiahe
    Basu, Sumanta
    Banerjee, Moulinath
    Michailidis, George
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [7] SCAD-PENALIZED COMPLEX GAUSSIAN GRAPHICAL MODEL SELECTION
    Tugnait, Jitendra K.
    [J]. PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [8] Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space
    Nielsen, Heino Bohn
    Rahbek, Anders
    [J]. ECONOMETRICS JOURNAL, 2024, 27 (01): : 107 - 125
  • [9] Updating of the Gaussian graphical model through targeted penalized estimation
    van Wieringen, Wessel N.
    Stam, Koen A.
    Peeters, Carel F. W.
    van de Wiel, Mark A.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 178
  • [10] Penalized estimation of the Gaussian graphical model from data with replicates
    van Wieringen, Wessel N.
    Chen, Yao
    [J]. STATISTICS IN MEDICINE, 2021, 40 (19) : 4279 - 4293