Optimal tuning parameter estimation in maximum penalized likelihood method

被引:6
|
作者
Ueki, Masao [1 ]
Fueda, Kaoru [2 ]
机构
[1] Inst Stat Math, Minato Ku, Tokyo 1068569, Japan
[2] Okayama Univ, Grad Sch Environm Sci, Okayama 7008530, Japan
关键词
Cross-validation; Direct plug-in method; Generalized information criterion; Kullback-Leibler information; Maximum penalized likelihood method; Penalized spline; Ridge regression; Tuning parameter estimation; INFORMATION CRITERIA; CONFIDENCE-INTERVALS; MODEL SELECTION; REGRESSION;
D O I
10.1007/s10463-008-0186-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In maximum penalized or regularized methods, it is important to select a tuning parameter appropriately. This paper proposes a direct plug-in method for tuning parameter selection. The tuning parameters selected using a generalized information criterion (Konishi and Kitagawa, Biometrika, 83, 875-890, 1996) and cross-validation (Stone, Journal of the Royal Statistical Society, Series B, 58, 267-288, 1974) are shown to be asymptotically equivalent to those selected using the proposed method, from the perspective of estimation of an optimal tuning parameter. Because of its directness, the proposed method is superior to the two selection methods mentioned above in terms of computational cost. Some numerical examples which contain the penalized spline generalized linear model regressions are provided.
引用
收藏
页码:413 / 438
页数:26
相关论文
共 50 条