Optimal tuning parameter estimation in maximum penalized likelihood method

被引:6
|
作者
Ueki, Masao [1 ]
Fueda, Kaoru [2 ]
机构
[1] Inst Stat Math, Minato Ku, Tokyo 1068569, Japan
[2] Okayama Univ, Grad Sch Environm Sci, Okayama 7008530, Japan
关键词
Cross-validation; Direct plug-in method; Generalized information criterion; Kullback-Leibler information; Maximum penalized likelihood method; Penalized spline; Ridge regression; Tuning parameter estimation; INFORMATION CRITERIA; CONFIDENCE-INTERVALS; MODEL SELECTION; REGRESSION;
D O I
10.1007/s10463-008-0186-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In maximum penalized or regularized methods, it is important to select a tuning parameter appropriately. This paper proposes a direct plug-in method for tuning parameter selection. The tuning parameters selected using a generalized information criterion (Konishi and Kitagawa, Biometrika, 83, 875-890, 1996) and cross-validation (Stone, Journal of the Royal Statistical Society, Series B, 58, 267-288, 1974) are shown to be asymptotically equivalent to those selected using the proposed method, from the perspective of estimation of an optimal tuning parameter. Because of its directness, the proposed method is superior to the two selection methods mentioned above in terms of computational cost. Some numerical examples which contain the penalized spline generalized linear model regressions are provided.
引用
收藏
页码:413 / 438
页数:26
相关论文
共 50 条
  • [41] Maximum penalized likelihood estimation of mixed proportional hazard models
    Huh, K
    Postert, AK
    Sickles, RC
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (09) : 2143 - 2164
  • [42] Maximum penalized quasi-likelihood estimation of the diffusion function
    Hamrick, Jeff
    Huang, Yifei
    Kardaras, Constantinos
    Taqqu, Murad S.
    QUANTITATIVE FINANCE, 2011, 11 (11) : 1675 - 1684
  • [43] N-stage splitting for maximum penalized likelihood estimation
    Latham, GA
    Yu, S
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1996, 55 (1-2) : 159 - 168
  • [44] Stochastic maximum-likelihood method for MIMO propagation parameter estimation
    Ribeiro, Cassio B.
    Ollila, Esa
    Koivunen, Visa
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (01) : 46 - 55
  • [45] GRINDING CIRCUIT PARAMETER-ESTIMATION USING THE MAXIMUM LIKELIHOOD METHOD
    OLSEN, TO
    LENHARTZEN, T
    INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 1979, 6 (02) : 133 - 153
  • [46] A Penalized Likelihood Approach to Parameter Estimation with Integral Reliability Constraints
    Smith, Barry
    Wang, Steven
    Wong, Augustine
    Zhou, Xiaofeng
    ENTROPY, 2015, 17 (06) : 4040 - 4063
  • [47] Maximum Likelihood Estimation and Optimal Coordinates
    Spurek, P.
    Tabor, J.
    ADVANCES IN SYSTEMS SCIENCE, ICSS 2016, 2017, 539 : 3 - 13
  • [48] Ultrasonic Parameter Estimation Using the Maximum Likelihood Estimation
    Laddada, S.
    Lemlikchi, S.
    Djelouah, H.
    Si-Chaib, M. O.
    2015 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 200 - +
  • [49] Maximum Likelihood, Profile Likelihood, and Penalized Likelihood: A Primer
    Cole, Stephen R.
    Chu, Haitao
    Greenland, Sander
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 179 (02) : 252 - 260
  • [50] ELM parameter estimation in view of maximum likelihood
    Yang, Lanzhen
    Tsang, Eric C. C.
    Wang, Xizhao
    Zhang, Chengling
    NEUROCOMPUTING, 2023, 557