Tuning Parameter Selection in Penalized Frailty Models

被引:0
|
作者
Androulakis, E. [1 ]
Koukouvinos, C. [1 ]
Vonta, F. [1 ]
机构
[1] Natl Tech Univ Athens, Athens, Greece
关键词
Clustered data; Error estimation; Generalized cross validation; Penalized frailty model; Penalized likelihood; Tuning parameter; Variable selection; VARIABLE SELECTION; LIKELIHOOD; LASSO;
D O I
10.1080/03610918.2014.968723
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The penalized likelihood approach of Fan and Li (2001, 2002) differs from the traditional variable selection procedures in that it deletes the non-significant variables by estimating their coefficients as zero. Nevertheless, the desirable performance of this shrinkage methodology relies heavily on an appropriate selection of the tuning parameter which is involved in the penalty functions. In this work, new estimates of the norm of the error are firstly proposed through the use of Kantorovich inequalities and, subsequently, applied to the frailty models framework. These estimates are used in order to derive a tuning parameter selection procedure for penalized frailty models and clustered data. In contrast with the standard methods, the proposed approach does not depend on resampling and therefore results in a considerable gain in computational time. Moreover, it produces improved results. Simulation studies are presented to support theoretical findings and two real medical data sets are analyzed.
引用
收藏
页码:1538 / 1553
页数:16
相关论文
共 50 条
  • [1] Tuning parameter selection in penalized generalized linear models for discrete data
    Androulakis, E.
    Koukouvinos, C.
    Vonta, F.
    STATISTICA NEERLANDICA, 2014, 68 (04) : 276 - 292
  • [2] Tuning parameter selection for a penalized estimator of species richness
    Paynter, Alex
    Willis, Amy D.
    JOURNAL OF APPLIED STATISTICS, 2021, 48 (06) : 1053 - 1070
  • [3] Assessing Tuning Parameter Selection Variability in Penalized Regression
    Hu, Wenhao
    Laber, Eric B.
    Barker, Clay
    Stefanski, Leonard A.
    TECHNOMETRICS, 2019, 61 (02) : 154 - 164
  • [4] Tuning parameter selection in high dimensional penalized likelihood
    Fan, Yingying
    Tang, Cheng Yong
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (03) : 531 - 552
  • [5] Selecting the tuning parameter in penalized Gaussian graphical models
    Abbruzzo, Antonino
    Vujacic, Ivan
    Mineo, Angelo M.
    Wit, Ernst C.
    STATISTICS AND COMPUTING, 2019, 29 (03) : 559 - 569
  • [6] Selecting the tuning parameter in penalized Gaussian graphical models
    Antonino Abbruzzo
    Ivan Vujačić
    Angelo M. Mineo
    Ernst C. Wit
    Statistics and Computing, 2019, 29 : 559 - 569
  • [7] Estimation and variable selection via frailty models with penalized likelihood
    Androulakis, E.
    Koukouvinos, C.
    Vonta, F.
    STATISTICS IN MEDICINE, 2012, 31 (20) : 2223 - 2239
  • [8] Tuning parameter selection for penalized estimation via R2
    Holter, Julia C.
    Stallrich, Jonathan W.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 183
  • [9] TUNING PARAMETER SELECTION FOR PENALIZED LIKELIHOOD ESTIMATION OF GAUSSIAN GRAPHICAL MODEL
    Gao, Xin
    Pu, Daniel Q.
    Wu, Yuehua
    Xu, Hong
    STATISTICA SINICA, 2012, 22 (03) : 1123 - 1146
  • [10] Penalized survival models and frailty
    Therneau, TM
    Grambsch, PM
    Pankratz, VS
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2003, 12 (01) : 156 - 175