Tuning Parameter Selection in Penalized Frailty Models

被引:0
|
作者
Androulakis, E. [1 ]
Koukouvinos, C. [1 ]
Vonta, F. [1 ]
机构
[1] Natl Tech Univ Athens, Athens, Greece
关键词
Clustered data; Error estimation; Generalized cross validation; Penalized frailty model; Penalized likelihood; Tuning parameter; Variable selection; VARIABLE SELECTION; LIKELIHOOD; LASSO;
D O I
10.1080/03610918.2014.968723
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The penalized likelihood approach of Fan and Li (2001, 2002) differs from the traditional variable selection procedures in that it deletes the non-significant variables by estimating their coefficients as zero. Nevertheless, the desirable performance of this shrinkage methodology relies heavily on an appropriate selection of the tuning parameter which is involved in the penalty functions. In this work, new estimates of the norm of the error are firstly proposed through the use of Kantorovich inequalities and, subsequently, applied to the frailty models framework. These estimates are used in order to derive a tuning parameter selection procedure for penalized frailty models and clustered data. In contrast with the standard methods, the proposed approach does not depend on resampling and therefore results in a considerable gain in computational time. Moreover, it produces improved results. Simulation studies are presented to support theoretical findings and two real medical data sets are analyzed.
引用
收藏
页码:1538 / 1553
页数:16
相关论文
共 50 条