Maximum trimmed likelihood estimator for multivariate mixed continuous and categorical data

被引:8
|
作者
Cheng, Tsung-Chi [1 ]
Biswas, Atanu [2 ]
机构
[1] Natl Chengchi Univ, Dept Stat, Taipei 11605, Taiwan
[2] Indian Stat Inst, Appl Stat Unit, Kolkata 700108, India
关键词
forward search algorithm; mahalanobis distance; maximum trimmed likelihood estimator; minimum covariance determinant estimator; mixed data; multiple outliers; robust diagnostics;
D O I
10.1016/j.csda.2007.06.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we apply the maximum trimmed likelihood (MTL) approach [Hadi, A.S., Luce (n) over tildeo, A., 1997. Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms. Comput. Statist. Data Anal. 25, 251-272] to obtain the robust estimators of multivariate location and shape, especially for data mixed with continuous and categorical variables. The forward search algorithm [Atkinson, A.C., 1994. Fast very robust methods for the detection of multiple outliers. J. Amer. Statist. Assoc. 89, 1329-1339] is adapted to compute the proposed MTL estimates. A simulation study shows that the proposed estimator outperforms the classical maximum likelihood estimator when outliers exist in data. Real data sets are also used to illustrate the method and results of the detection of the outliers. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2042 / 2065
页数:24
相关论文
共 50 条