Maximum trimmed likelihood estimator for multivariate mixed continuous and categorical data

被引:8
|
作者
Cheng, Tsung-Chi [1 ]
Biswas, Atanu [2 ]
机构
[1] Natl Chengchi Univ, Dept Stat, Taipei 11605, Taiwan
[2] Indian Stat Inst, Appl Stat Unit, Kolkata 700108, India
关键词
forward search algorithm; mahalanobis distance; maximum trimmed likelihood estimator; minimum covariance determinant estimator; mixed data; multiple outliers; robust diagnostics;
D O I
10.1016/j.csda.2007.06.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we apply the maximum trimmed likelihood (MTL) approach [Hadi, A.S., Luce (n) over tildeo, A., 1997. Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms. Comput. Statist. Data Anal. 25, 251-272] to obtain the robust estimators of multivariate location and shape, especially for data mixed with continuous and categorical variables. The forward search algorithm [Atkinson, A.C., 1994. Fast very robust methods for the detection of multiple outliers. J. Amer. Statist. Assoc. 89, 1329-1339] is adapted to compute the proposed MTL estimates. A simulation study shows that the proposed estimator outperforms the classical maximum likelihood estimator when outliers exist in data. Real data sets are also used to illustrate the method and results of the detection of the outliers. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2042 / 2065
页数:24
相关论文
共 50 条
  • [31] A maximum smoothed likelihood estimator in the current status continuous mark model
    Groeneboom, Piet
    Jongbloed, Geurt
    Witte, Birgit I.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (01) : 85 - 101
  • [32] A Targeted Maximum Likelihood Estimator of a Causal Effect on a Bounded Continuous Outcome
    Gruber, Susan
    van der Laan, Mark J.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (01):
  • [33] On the uniqueness of the maximum likelihood estimator
    Orme, CD
    Ruud, PA
    ECONOMICS LETTERS, 2002, 75 (02) : 209 - 217
  • [34] The density of the maximum likelihood estimator
    Hillier, G
    Armstrong, M
    ECONOMETRICA, 1999, 67 (06) : 1459 - 1470
  • [35] The Sherpa Maximum Likelihood Estimator
    Nguyen, D.
    Doe, S.
    Evans, I.
    Hain, R.
    Primini, F.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XX, 2011, 442 : 517 - 520
  • [36] A semiparametric maximum likelihood estimator
    Ai, CR
    ECONOMETRICA, 1997, 65 (04) : 933 - 963
  • [37] A simulated pseudo-maximum likelihood estimator for nonlinear mixed models
    Concordet, D
    Nunez, OG
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (02) : 187 - 201
  • [38] MAXIMUM-LIKELIHOOD ESTIMATION WITH INCOMPLETE MULTIVARIATE DATA
    TRAWINSKI, IM
    BARGMANN, RE
    ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (02): : 647 - &
  • [39] A maximum-likelihood surface estimator for dense range data
    Whitaker, RT
    Gregor, J
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (10) : 1372 - 1387
  • [40] Joint maximum likelihood estimator for pupil and image plane data
    Phillips, James D.
    Cain, Stephen C.
    OPTICAL ENGINEERING, 2008, 47 (02)