Nonparametric Mixtures of Factor Analyzers

被引:0
|
作者
Gorur, Dilan
Rasmussen, Carl Edward
机构
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The mixtures of factor analyzers (MFA) model allows data to be modeled as a mixture of Gaussians with a reduced parametrization. We present the formulation of a nonparametric form of the MFA model, the Dirichlet process MFA (DPMFA). The proposed model can be used for density estimation or clustering of high dimensiona data. We utilize the DPMFA for clustering the action potentials of different neurons from extracellular recordings, a problem known as spike sorting. DPMFA model is compared to Dirichlet process mixtures of Gaussians model (DPGMM) which has a higher computational complexity. We show that DPMFA has similar modeling performance in lower dimensions when compared to DPGMM, and is able to work in higher dimensions.
引用
收藏
页码:922 / 925
页数:4
相关论文
共 50 条
  • [1] MIXTURES OF FACTOR ANALYZERS AND DEEP MIXTURES OF FACTOR ANALYZERS DIMENSIONALITY REDUCTION ALGORITHMS FOR HYPERSPECTRAL IMAGES CLASSIFICATION
    Zhao, Bin
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Chanussot, Jocelyn
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 891 - 894
  • [2] Mixtures of factor analyzers:: an extension with covariates
    Fokoué, E
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (02) : 370 - 384
  • [3] Bayesian analysis of mixtures of factor analyzers
    Utsugi, A
    Kumagai, T
    [J]. NEURAL COMPUTATION, 2001, 13 (05) : 993 - 1002
  • [4] Maximum likelihood estimation of mixtures of factor analyzers
    Montanari, Angela
    Viroli, Cinzia
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (09) : 2712 - 2723
  • [5] Mixtures of Hidden Truncation Hyperbolic Factor Analyzers
    Paula M. Murray
    Ryan P. Browne
    Paul D. McNicholas
    [J]. Journal of Classification, 2020, 37 : 366 - 379
  • [6] Mixtures of skew-t factor analyzers
    Murray, Paula M.
    Browne, Ryan P.
    McNicholas, Paul D.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 77 : 326 - 335
  • [7] Voice Conversion Based on Mixtures of Factor Analyzers
    Uto, Yosuke
    Nankaku, Yoshihiko
    Toda, Tomoki
    Lee, Akinobu
    Tokuda, Keiichi
    [J]. INTERSPEECH 2006 AND 9TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING, VOLS 1-5, 2006, : 2278 - +
  • [8] Mixtures of Hidden Truncation Hyperbolic Factor Analyzers
    Murray, Paula M.
    Browne, Ryan P.
    McNicholas, Paul D.
    [J]. JOURNAL OF CLASSIFICATION, 2020, 37 (02) : 366 - 379
  • [9] (SEMI-) SUPERVISED MIXTURES OF FACTOR ANALYZERS AND DEEP MIXTURES OF FACTOR ANALYZERS DIMENSIONALITY REDUCTION ALGORITHMS FOR HYPERSPECTRAL IMAGES CLASSIFICATION
    Zhao, Bin
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    Chanussot, Jocelyn
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 887 - 890
  • [10] Mixtures of factor analyzers with scale mixtures of fundamental skew normal distributions
    Lee, Sharon X.
    Lin, Tsung-, I
    McLachlan, Geoffrey J.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (02) : 481 - 512