Nonparametric Mixtures of Factor Analyzers

被引:0
|
作者
Gorur, Dilan
Rasmussen, Carl Edward
机构
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The mixtures of factor analyzers (MFA) model allows data to be modeled as a mixture of Gaussians with a reduced parametrization. We present the formulation of a nonparametric form of the MFA model, the Dirichlet process MFA (DPMFA). The proposed model can be used for density estimation or clustering of high dimensiona data. We utilize the DPMFA for clustering the action potentials of different neurons from extracellular recordings, a problem known as spike sorting. DPMFA model is compared to Dirichlet process mixtures of Gaussians model (DPGMM) which has a higher computational complexity. We show that DPMFA has similar modeling performance in lower dimensions when compared to DPGMM, and is able to work in higher dimensions.
引用
收藏
页码:922 / 925
页数:4
相关论文
共 50 条
  • [41] Robust clustering of multiply censored data via mixtures of t factor analyzers
    Wan-Lun Wang
    Tsung-I Lin
    [J]. TEST, 2022, 31 : 22 - 53
  • [42] Model-based clustering of censored data via mixtures of factor analyzers
    Wang, Wan-Lun
    Castro, Luis M.
    Lachos, Victor H.
    Lin, Tsung-I
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 140 (104-121) : 104 - 121
  • [43] Robust clustering of multiply censored data via mixtures of t factor analyzers
    Wang, Wan-Lun
    Lin, Tsung-, I
    [J]. TEST, 2022, 31 (01) : 22 - 53
  • [44] Semi-Supervised Mixtures of Factor Analyzers Feature Extraction for Hyperspectral Images
    Zhao, Bin
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    Chanussot, Jocelyn
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [45] Large-scale gradient-based training of Mixtures of Factor Analyzers
    Gepperth, Alexander
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [46] Managing Polysemy and Synonymy in Science Mapping Using the Mixtures of Factor Analyzers Model
    Kwakkel, Jan H.
    Cunningham, Scott W.
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2009, 60 (10): : 2064 - 2078
  • [47] Flexible clustering via extended mixtures of common t-factor analyzers
    Wang, Wan-Lun
    Lin, Tsung-I
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2017, 101 (03) : 227 - 252
  • [48] Flexible clustering via extended mixtures of common t-factor analyzers
    Wan-Lun Wang
    Tsung-I Lin
    [J]. AStA Advances in Statistical Analysis, 2017, 101 : 227 - 252
  • [49] Mixtures of principal component analyzers
    Tipping, ME
    Bishop, CM
    [J]. FIFTH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 1997, (440): : 13 - 18
  • [50] Mixtures of Factor Analyzers with Common Factor Loadings: Applications to the Clustering and Visualization of High-Dimensional Data
    Baek, Jangsun
    McLachlan, Geoffrey J.
    Flack, Lloyd K.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (07) : 1298 - 1309