Microstructure and ion transport in Li1+x Ti2-x M x (PO4)3 (M = Cr, Fe, Al) NASICON-type materials

被引:19
|
作者
Svitan'ko, A. I. [1 ]
Novikova, S. A. [1 ]
Stenina, I. A. [1 ]
Skopets, V. A. [1 ]
Yaroslavtsev, A. B. [1 ]
机构
[1] Russian Acad Sci, Kurnakov Inst Gen & Inorgan Chem, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
SOLID ELECTROLYTES; CATION MOBILITY; CONDUCTORS; CONDUCTIVITY; PHOSPHATES; CHEMISTRY;
D O I
10.1134/S0020168514030145
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Li1 + x Ti2 - x M (x) (PO4)(3) (M = Cr, Fe, Al) NASICON-type materials have been prepared by the Pechini process and solid-state reactions and characterized by X-ray diffraction, scanning electron microscopy, and impedance spectroscopy. We have identified the factors that determine the rate of ion transport in nanocrystalline and bulk samples at low and high temperatures. The effects of the preparation procedure and heterovalent doping on the ionic conductivity of the materials have been assessed. Heterovalent doping is shown to have a considerably stronger effect on the ionic conductivity in comparison with the microstructure of the materials.
引用
收藏
页码:273 / 279
页数:7
相关论文
共 50 条
  • [41] Phase transitions and ion transport in NASICON materials of composition Li1 + xZr2 − xInx(PO4)3(x = 0–1)
    D. V. Safronov
    I. A. Stenina
    A. V. Maksimychev
    S. L. Shestakov
    A. B. Yaroslavtsev
    Russian Journal of Inorganic Chemistry, 2009, 54 : 1697 - 1703
  • [42] Phase transitions of the NASICON-type mixed phosphates LiM2(PO4)3 (M = Ti, Zr) and LiInNb(PO4)3
    I. Yu. Pinus
    A. R. Shaikhlislamova
    I. A. Stenina
    N. A. Zhuravlev
    A. B. Yaroslavtsev
    Inorganic Materials, 2009, 45 : 1370 - 1374
  • [43] Sacrificial Additive C60-Assisted Catholyte Buffer Layer for Li1+x Al x Ti2-x (PO4)3-Based All-Solid-State High-Voltage Batteries
    Wang, Xuan
    Huang, Shuo
    Wei, Benben
    Liu, Min
    Yang, Bo
    Liu, Ruoqing
    Jin, Hongyun
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (34) : 44912 - 44920
  • [44] Phase transitions of the NASICON-type mixed phosphates LiM2(PO4)3 (M = Ti, Zr) and LiInNb(PO4)3
    Pinus, I. Yu.
    Shaikhlislamova, A. R.
    Stenina, I. A.
    Zhuravlev, N. A.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2009, 45 (12) : 1370 - 1374
  • [45] Spray-Flame Synthesis of NASICON-Type Rhombohedral (α) Li1+xYxZr2-x(PO4)3 [x=0-0.2] Solid Electrolytes
    Ali, Md Yusuf
    Chen, Tianyu
    Orthner, Hans
    Wiggers, Hartmut
    NANOMATERIALS, 2024, 14 (15)
  • [46] Investigation on electrochemical interface between Li4Ti5O12 and Li1+xAlxTi2-x(PO4)3 NASICON-type solid electrolyte
    Hoshina, K
    Dokko, K
    Kanamura, K
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) : A2138 - A2142
  • [47] Enhanced total ionic conductivity of NASICON-type solid-state electrolyte Li1+xAlxTi2−x(PO4)3
    Agnes Lakshmanan
    Ramkumar Gurusamy
    Sabarinathan Venkatachalam
    Ionics, 2023, 29 : 5123 - 5138
  • [48] ION-EXCHANGE PROPERTIES OF NASICON-TYPE PHOSPHATES WITH THE FRAMEWORKS [TI-2(PO4)(3)] AND [TI1.7AL0.3(PO4)(3)]
    HIROSE, N
    KUWANO, J
    JOURNAL OF MATERIALS CHEMISTRY, 1994, 4 (01) : 9 - 12
  • [49] Phase boundary propagation kinetics predominately limit the rate capability of NASICON-type Na3+xMnxV2-x(PO4)3 (0≤x≤1) materials
    Anishchenkoa, Dmitrii V.
    Zakharkin, Maxim V.
    Nikitina, Victoria A.
    Stevenson, Keith J.
    Antipov, Evgeny V.
    ELECTROCHIMICA ACTA, 2020, 354
  • [50] Enhanced total ionic conductivity of NASICON-type solid-state electrolyte Li1+xAlxTi2-x(PO4)3
    Lakshmanan, Agnes
    Gurusamy, Ramkumar
    Venkatachalam, Sabarinathan
    IONICS, 2023, 29 (12) : 5123 - 5138