Increasing the efficiency of the use of wavelet-like finite element basis functions

被引:0
|
作者
Tuksinvarajan, S [1 ]
Hutchcraft, WE [1 ]
Gordon, RK [1 ]
机构
[1] Univ Mississippi, Dept Elect Engn, University, MS 38677 USA
关键词
wavelets; finite element method; iterative techniques;
D O I
10.1109/SSST.2002.1027022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, some of the advantages and disadvantages of the use of wavelet-like basis functions are discussed. Two modifications for mitigating some of the disadvantages are considered. Numerical results obtained using these modifications are presented.
引用
收藏
页码:142 / 146
页数:5
相关论文
共 50 条
  • [41] Finite element method for solving the Dirac eigenvalue problem with linear basis functions
    Almanasreh, Hasan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 1199 - 1211
  • [42] A Structured Grid Finite-Element Method Using Computed Basis Functions
    Nazari, Moein
    Webb, Jon P.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (03) : 1215 - 1223
  • [43] Hierarchical Additive Basis Functions for the Finite-Element Treatment of Corner Singularities
    Graglia, Roberto D.
    Peterson, Andrew F.
    Matekovits, Ladislau
    Petrini, Paolo
    [J]. ELECTROMAGNETICS, 2014, 34 (3-4) : 171 - 198
  • [44] Finite element time domain method using piecewise constant basis functions
    Artuzi, WA
    [J]. PROCEEDINGS OF THE INTERNATIONAL 2003 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE - IMOC 2003, VOLS I AND II, 2003, : 1029 - 1032
  • [45] An Interpolation Problem Arising in a Coupling of the Finite Element Method with Holomorphic Basis Functions
    Guerlebeck, K.
    Kaehler, U.
    Legatiuk, D.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [46] Algorithm 839: FIAT, a new paradigm for computing finite element basis functions
    Kirby, RC
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2004, 30 (04): : 502 - 516
  • [47] Finite element analysis of scattering using coupled basis functions for elliptical boundaries
    Jin, JM
    Lu, N
    [J]. IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 1997, 144 (06) : 501 - 508
  • [48] Variational use of finite basis functions that do not satisy the boundary conditions
    Diamond, James J.
    Cao, Yuhong
    Jenness, Christopher A.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [49] Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions
    Franca, LP
    Madureira, AL
    Valentin, F
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (27-29) : 3006 - 3021
  • [50] Solving Multirate Partial Differential Equations using hat Finite Element basis functions
    Pels, Andreas
    Sabariego, Ruth V.
    Schops, Sebastian
    [J]. 2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,