Increasing the efficiency of the use of wavelet-like finite element basis functions

被引:0
|
作者
Tuksinvarajan, S [1 ]
Hutchcraft, WE [1 ]
Gordon, RK [1 ]
机构
[1] Univ Mississippi, Dept Elect Engn, University, MS 38677 USA
关键词
wavelets; finite element method; iterative techniques;
D O I
10.1109/SSST.2002.1027022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, some of the advantages and disadvantages of the use of wavelet-like basis functions are discussed. Two modifications for mitigating some of the disadvantages are considered. Numerical results obtained using these modifications are presented.
引用
收藏
页码:142 / 146
页数:5
相关论文
共 50 条
  • [21] THE FINITE ELEMENT METHOD BASED ON INTERPOLATING WITH WAVELET BASIS FUNCTION
    骆少明
    张湘伟
    [J]. Applied Mathematics and Mechanics(English Edition), 2000, (01) : 15 - 20
  • [22] The finite element method based on interpolating with wavelet basis function
    Luo, SM
    Zhang, XW
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2000, 21 (01) : 13 - 18
  • [23] A note on the finite element method with singular basis functions
    Kaneko, H
    Padilla, PA
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (04) : 491 - 495
  • [24] The finite volume element method with quadratic basis functions
    Liebau, F
    [J]. COMPUTING, 1996, 57 (04) : 281 - 299
  • [25] Decohesion finite element with enriched basis functions for delamination
    Guiamatsia, I.
    Ankersen, J. K.
    Davies, G. A. O.
    Iannucci, L.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (15-16) : 2616 - 2624
  • [26] Basis Functions With Divergence Constraints for the Finite Element Method
    Pinciuc, C. M.
    Konrad, A.
    Lavers, J. D.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (04)
  • [27] Basis Functions for Divergence Constraints in the Finite Element Method
    Pinciuc, Chris M.
    Konrad, Adalbert
    Lavers, John Douglas
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3421 - 3424
  • [28] Finite element basis functions for nested meshes of nonuniform refinement level
    Hill, V
    Farle, O
    Dyczij-Edlinger, R
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) : 981 - 984
  • [29] Extraction of finite element basis functions from the cellular topology of meshes
    Doucet, Cedric
    Charpentier, Isabelle
    Coulomb, Jean-Louis
    Guerin, Christophe
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 726 - 729
  • [30] Computed Basis Functions and the Nonconforming Voxel Finite-Element Method
    Nazari, Moein
    Webb, Jon P.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 597 - 600