Extraction of finite element basis functions from the cellular topology of meshes

被引:0
|
作者
Doucet, Cedric [2 ]
Charpentier, Isabelle [3 ]
Coulomb, Jean-Louis [1 ]
Guerin, Christophe [4 ]
机构
[1] ENSIEG, CNRS, UMR 5269, Lab G2ELab, F-38402 St Martin Dheres, France
[2] CNRS, UMR 5224, Lab Jean Kuntzmann, F-38041 Grenoble 9, France
[3] CNRS, UMR 7554, Mecan & Phys Mat Lab, F-57045 Metz 1, France
[4] Cedrat SA, F-38246 Meylan, France
关键词
algebraic topology; finite element methods;
D O I
10.1109/TMAG.2007.915949
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is devoted to the presentation of a simple but powerful topological approach for the computation of basis functions involved in the expression of finite element interpolants. It deals with the so-called nodal and edge elements but similar considerations can be made for the construction of facet ones. All standard cells are treated including pyramids.
引用
收藏
页码:726 / 729
页数:4
相关论文
共 50 条
  • [1] Finite element basis functions for nested meshes of nonuniform refinement level
    Hill, V
    Farle, O
    Dyczij-Edlinger, R
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) : 981 - 984
  • [2] Continuous Finite Element Subgrid Basis Functions for Discontinuous Galerkin Schemes on Unstructured Polygonal Voronoi Meshes
    Boscheri, Walter
    Dumbser, Michael
    Gaburro, Elena
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 32 (01) : 259 - 298
  • [3] Interpolation of non-smooth functions on anisotropic finite element meshes
    Apel, T
    [J]. RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (06): : 1149 - 1185
  • [4] A note on the finite element method with singular basis functions
    Kaneko, H
    Padilla, PA
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (04) : 491 - 495
  • [5] The finite volume element method with quadratic basis functions
    Liebau, F
    [J]. COMPUTING, 1996, 57 (04) : 281 - 299
  • [6] Decohesion finite element with enriched basis functions for delamination
    Guiamatsia, I.
    Ankersen, J. K.
    Davies, G. A. O.
    Iannucci, L.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (15-16) : 2616 - 2624
  • [7] Basis Functions With Divergence Constraints for the Finite Element Method
    Pinciuc, C. M.
    Konrad, A.
    Lavers, J. D.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (04)
  • [8] Basis Functions for Divergence Constraints in the Finite Element Method
    Pinciuc, Chris M.
    Konrad, Adalbert
    Lavers, John Douglas
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3421 - 3424
  • [9] A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM
    Benson, D. J.
    Bazilevs, Y.
    De Luycker, E.
    Hsu, M. -C.
    Scott, M.
    Hughes, T. J. R.
    Belytschko, T.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (06) : 765 - 785
  • [10] A general topology-based framework for adaptive insertion of cohesive elements in finite element meshes
    Paulino, Glaucio H.
    Celes, Waldemar
    Espinha, Rodrigo
    Zhang, Zhengyu
    [J]. ENGINEERING WITH COMPUTERS, 2008, 24 (01) : 59 - 78