The finite volume element method with quadratic basis functions

被引:71
|
作者
Liebau, F
机构
[1] Fachbereich Mathematik, Techn. Univ. Berlin, D-10623 Berlin
关键词
finite volume method; box scheme; stability; error estimates;
D O I
10.1007/BF02252250
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper presents a box scheme with quadratic basis functions for the discretisation of elliptic boundary value problems. The resulting discretisation matrix is non-symmetrical (and also not an M-matrix). The stability analysis is based on an elementwise estimation of the scalar product [A(h) u(h), u(h)]. Sufficient conditions placed on the triangles of the triangulation lead to discrete ellipticity. Proof of an O(h(2)) error estimate is given for these conditions.
引用
下载
收藏
页码:281 / 299
页数:19
相关论文
共 50 条
  • [1] Comparison of linear and quadratic shape functions for a hybrid control-volume finite element method
    Stry, Y
    Hainke, M
    Jung, T
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2002, 12 (08) : 1009 - 1031
  • [2] Quadratic finite volume element method for the improved Boussinesq equation
    Zhang, Zhiyue
    Lu, Fuqiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (01)
  • [3] Quadratic finite volume element method for the air pollution model
    Wang, Ping
    Zhang, Zhiyue
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (13) : 2925 - 2944
  • [4] EXPLICIT BASIS FUNCTIONS OF QUADRATIC AND IMPROVED QUADRATIC FINITE-ELEMENT SPACES FOR THE STOKES PROBLEM
    CAUSSIGNAC, P
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1986, 2 (02): : 205 - 211
  • [5] Adaptive finite volume method with Walsh basis functions
    Ren J.
    Wang G.
    Hu G.
    Shi X.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (08):
  • [6] A note on the finite element method with singular basis functions
    Kaneko, H
    Padilla, PA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (04) : 491 - 495
  • [7] Basis Functions With Divergence Constraints for the Finite Element Method
    Pinciuc, C. M.
    Konrad, A.
    Lavers, J. D.
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (04)
  • [8] Basis Functions for Divergence Constraints in the Finite Element Method
    Pinciuc, Chris M.
    Konrad, Adalbert
    Lavers, John Douglas
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3421 - 3424
  • [9] Finite volume element method with Lagrangian cubic functions
    Yuqiong Ding
    Yonghai Li
    Journal of Systems Science and Complexity, 2011, 24 : 991 - 1006
  • [10] Interpolation functions in control volume finite element method
    Abbassi, H
    Turki, S
    Ben Nasrallah, S
    COMPUTATIONAL MECHANICS, 2003, 30 (04) : 303 - 309