The finite volume element method with quadratic basis functions

被引:71
|
作者
Liebau, F
机构
[1] Fachbereich Mathematik, Techn. Univ. Berlin, D-10623 Berlin
关键词
finite volume method; box scheme; stability; error estimates;
D O I
10.1007/BF02252250
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper presents a box scheme with quadratic basis functions for the discretisation of elliptic boundary value problems. The resulting discretisation matrix is non-symmetrical (and also not an M-matrix). The stability analysis is based on an elementwise estimation of the scalar product [A(h) u(h), u(h)]. Sufficient conditions placed on the triangles of the triangulation lead to discrete ellipticity. Proof of an O(h(2)) error estimate is given for these conditions.
引用
收藏
页码:281 / 299
页数:19
相关论文
共 50 条
  • [21] A NEW MOVING FINITE-ELEMENT METHOD BASED ON QUADRATIC APPROXIMATION FUNCTIONS
    HANSEN, JA
    HASSAGER, O
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (02) : 415 - 430
  • [22] Novel basis functions for quadratic hexahedral edge element
    Liu, P
    Xu, JD
    Wan, W
    Jin, YQ
    WAVE PROPAGATION, SCATTERING AND EMISSION IN COMPLEX MEDIA, 2004, : 445 - 453
  • [23] A Discontinuous Finite Volume Element Method Based on Bilinear Trial Functions
    Zhang, Tie
    Tang, Lixin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2017, 14 (03)
  • [24] ON THE FINITE VOLUME ELEMENT METHOD
    CAI, ZQ
    NUMERISCHE MATHEMATIK, 1991, 58 (07) : 713 - 735
  • [25] The finite volume method in the context of the finite element method
    Wu, Cheng-Chieh
    Volker, Daniel
    Weisbrich, Sven
    Neitzel, Frank
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 2679 - 2683
  • [26] A finite volume method with Walsh basis functions to capture discontinuity inside grid
    Ren J.
    Wang G.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (03): : 773 - 788
  • [27] Finite element method for solving the Dirac eigenvalue problem with linear basis functions
    Almanasreh, Hasan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 1199 - 1211
  • [28] A Structured Grid Finite-Element Method Using Computed Basis Functions
    Nazari, Moein
    Webb, Jon P.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (03) : 1215 - 1223
  • [29] Finite element time domain method using piecewise constant basis functions
    Artuzi, WA
    PROCEEDINGS OF THE INTERNATIONAL 2003 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE - IMOC 2003, VOLS I AND II, 2003, : 1029 - 1032
  • [30] An Interpolation Problem Arising in a Coupling of the Finite Element Method with Holomorphic Basis Functions
    Guerlebeck, K.
    Kaehler, U.
    Legatiuk, D.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648