Finite element time domain method using piecewise constant basis functions

被引:0
|
作者
Artuzi, WA [1 ]
机构
[1] Univ Fed Parana, Dept Elect Engn, Curitiba, Parana, Brazil
关键词
FETD; FDTD; differential forms; Yee cell;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Whitney differential forms used in finite elemente time domain methods for electrodynamic computations are replaced by simpler piecewise constant forms in order to arrive at a concise, explicit and stable time domain formulation to be used with unstructured grids. As a result, a simple computational algorithm has been implemented and numerical tests demonstrate its advantages over some finite difference time domain approaches.
引用
收藏
页码:1029 / 1032
页数:4
相关论文
共 50 条
  • [1] Functional approximation and system identification using finite element networks (piecewise polynomial basis functions)
    Shimizu, K
    Sato, H
    Harashima, T
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1997, 80 (06): : 62 - 73
  • [2] Ray tracing in a finite-element domain using nodal basis functions
    Schrader, Karl N.
    Subia, Samuel R.
    Myre, John W.
    Summers, Kenneth L.
    [J]. APPLIED OPTICS, 2014, 53 (24) : F10 - F20
  • [3] Weak formulation of finite element method using wavelet basis functions
    Ho, SL
    Yang, SY
    Wong, HC
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (05) : 3203 - 3207
  • [4] Finite element time domain method using Laguerre polynomials
    Chung, YS
    Sarkar, TK
    Llorento-Romano, S
    Salarzar-Palma, M
    [J]. 2003 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2003, : 981 - 984
  • [5] Finite element time domain method using hexahedral elements
    Yamada, T
    Tani, K
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) : 1476 - 1479
  • [6] A note on the finite element method with singular basis functions
    Kaneko, H
    Padilla, PA
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (04) : 491 - 495
  • [7] The finite volume element method with quadratic basis functions
    Liebau, F
    [J]. COMPUTING, 1996, 57 (04) : 281 - 299
  • [8] Basis Functions With Divergence Constraints for the Finite Element Method
    Pinciuc, C. M.
    Konrad, A.
    Lavers, J. D.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (04)
  • [9] Basis Functions for Divergence Constraints in the Finite Element Method
    Pinciuc, Chris M.
    Konrad, Adalbert
    Lavers, John Douglas
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3421 - 3424
  • [10] Orthogonal vector basis functions for time domain finite element solution of the vector wave equation
    White, DA
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) : 1458 - 1461