The finite volume element method with quadratic basis functions

被引:71
|
作者
Liebau, F
机构
[1] Fachbereich Mathematik, Techn. Univ. Berlin, D-10623 Berlin
关键词
finite volume method; box scheme; stability; error estimates;
D O I
10.1007/BF02252250
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper presents a box scheme with quadratic basis functions for the discretisation of elliptic boundary value problems. The resulting discretisation matrix is non-symmetrical (and also not an M-matrix). The stability analysis is based on an elementwise estimation of the scalar product [A(h) u(h), u(h)]. Sufficient conditions placed on the triangles of the triangulation lead to discrete ellipticity. Proof of an O(h(2)) error estimate is given for these conditions.
引用
收藏
页码:281 / 299
页数:19
相关论文
共 50 条
  • [41] Development of vector basis functions in Vector Generalized Finite Element Method for inhomogeneous domains
    Tuncer, O.
    Shanker, B.
    Kempel, L. C.
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 1960 - 1963
  • [42] Decohesion finite element with enriched basis functions for delamination
    Guiamatsia, I.
    Ankersen, J. K.
    Davies, G. A. O.
    Iannucci, L.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (15-16) : 2616 - 2624
  • [43] ON CONVEX FUNCTIONS AND THE FINITE ELEMENT METHOD
    Aguilera, Nestor E.
    Morin, Pedro
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 3139 - 3157
  • [44] INFLUENCE FUNCTIONS IN FINITE ELEMENT METHOD
    KOLAR, V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1970, 50 (1-4): : T129 - &
  • [45] A quadratic finite volume method for nonlinear elliptic problems
    Yuanyuan Zhang
    Chuanjun Chen
    Chunjia Bi
    Advances in Computational Mathematics, 2021, 47
  • [46] A quadratic finite volume method for nonlinear elliptic problems
    Zhang, Yuanyuan
    Chen, Chuanjun
    Bi, Chunjia
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (03)
  • [47] Superconvergence of quadratic finite volume method on triangular meshes
    Wang, Xiang
    Li, Yonghai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 : 181 - 199
  • [48] Quadratic Finite Volume Method for a Nonlinear Elliptic Problem
    Du, Yanwei
    Li, Yonghai
    Sheng, Zhiqiang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (04) : 838 - 869
  • [49] BASIS OF FINITE-ELEMENT METHOD - PREFACE
    WASHIZU, K
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1976, 302 (5-6): : R7 - R8
  • [50] BASIS OF FINITE-ELEMENT METHOD - FOREWORD
    POMERANTZ, MA
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1976, 302 (5-6): : R5 - R5