ON CONVEX FUNCTIONS AND THE FINITE ELEMENT METHOD

被引:21
|
作者
Aguilera, Nestor E. [1 ,2 ]
Morin, Pedro [1 ,2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Santa Fe, Argentina
[2] Univ Nacl Litoral, Santa Fe, Argentina
关键词
finite element method; optimization problems; convex functions; adaptive meshes; VARIATIONAL-PROBLEMS SUBJECT; CONSTRAINT;
D O I
10.1137/080720917
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many problems of theoretical and practical interest involve finding a convex or concave function. For instance, optimization problems such as finding the projection on the convex functions in H(k)(Omega), or some problems in economics. In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and an adequate discrete version of the Hessian must be given. In this paper we propose a finite element description of the Hessian, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes. Using semidefinite programming codes, we show concrete examples of approximations to optimization problems.
引用
收藏
页码:3139 / 3157
页数:19
相关论文
共 50 条
  • [1] Conforming approximation of convex functions with the finite element method
    Gerd Wachsmuth
    Numerische Mathematik, 2017, 137 : 741 - 772
  • [2] Conforming approximation of convex functions with the finite element method
    Wachsmuth, Gerd
    NUMERISCHE MATHEMATIK, 2017, 137 (03) : 741 - 772
  • [3] A finite element method on convex polyhedra
    Wicke, Martin
    Botsch, Mario
    Gross, Markus
    COMPUTER GRAPHICS FORUM, 2007, 26 (03) : 355 - 364
  • [4] INFLUENCE FUNCTIONS IN FINITE ELEMENT METHOD
    KOLAR, V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1970, 50 (1-4): : T129 - &
  • [5] SPLINE FUNCTIONS AND FINITE-ELEMENT METHOD
    ATTEIA, M
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1975, 9 (NR2): : 13 - 40
  • [6] A finite element method with composite shape functions
    Sadeghirad, Alireza
    Astaneh, Ali Vaziri
    ENGINEERING COMPUTATIONS, 2011, 28 (3-4) : 389 - 422
  • [7] Smoothness of Functions in Spaces of the Finite Element Method
    Dem’yanovich Y.K.
    Prozorova E.V.
    Journal of Mathematical Sciences, 2018, 235 (3) : 262 - 274
  • [8] On enrichment functions in the extended finite element method
    Zhu, Qi-Zhi
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 91 (02) : 186 - 217
  • [9] Convergence of the Finite Element Method with Holomorphic Functions
    Bock, S.
    Guerlebeck, K.
    Legatiuk, D.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 513 - 516
  • [10] A note on the finite element method with singular basis functions
    Kaneko, H
    Padilla, PA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (04) : 491 - 495