Increasing the efficiency of the use of wavelet-like finite element basis functions

被引:0
|
作者
Tuksinvarajan, S [1 ]
Hutchcraft, WE [1 ]
Gordon, RK [1 ]
机构
[1] Univ Mississippi, Dept Elect Engn, University, MS 38677 USA
关键词
wavelets; finite element method; iterative techniques;
D O I
10.1109/SSST.2002.1027022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, some of the advantages and disadvantages of the use of wavelet-like basis functions are discussed. Two modifications for mitigating some of the disadvantages are considered. Numerical results obtained using these modifications are presented.
引用
收藏
页码:142 / 146
页数:5
相关论文
共 50 条
  • [31] Computed Basis Functions for Finite Element Analysis Based on Tomographic Data
    Gu, Huanhuan
    Gotman, Jean
    Webb, Jon P.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (09) : 2498 - 2505
  • [32] Localized harmonic characteristic basis functions for multiscale finite element methods
    Leonardo A. Poveda
    Juan Galvis
    Victor M. Calo
    [J]. Computational and Applied Mathematics, 2018, 37 : 1986 - 2000
  • [33] Specialized finite element basis functions for mid-frequency simulations
    Goldsberry, Benjamin M.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (03):
  • [34] Localized harmonic characteristic basis functions for multiscale finite element methods
    Poveda, Leonardo A.
    Galvis, Juan
    Calo, Victor M.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 1986 - 2000
  • [35] A note on the immersed finite element basis functions for elliptic interface problems
    Guan, Hongbo
    Zhang, Zhimin
    Zhu, Huiqing
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 115
  • [36] BASIS SET OF FUNCTIONS FOR CURVED ELEMENTS IN FINITE-ELEMENT METHOD
    CECCHI, MM
    PICA, A
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1977, 20 (02): : 151 - 162
  • [37] USE OF SINGULAR FUNCTIONS IN FINITE-ELEMENT METHOD
    LELIEVRE, J
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (11): : 863 - 865
  • [38] USE OF SINGULAR FUNCTIONS WITH FINITE-ELEMENT APPROXIMATIONS
    FIX, GJ
    GULATI, S
    WAKOFF, GI
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1973, 13 (02) : 209 - 228
  • [39] Wavelet like behavior of Slepian functions and their use in density estimation
    Walter, GG
    Shen, XP
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2005, 34 (03) : 687 - 711
  • [40] Ray tracing in a finite-element domain using nodal basis functions
    Schrader, Karl N.
    Subia, Samuel R.
    Myre, John W.
    Summers, Kenneth L.
    [J]. APPLIED OPTICS, 2014, 53 (24) : F10 - F20