A note on the immersed finite element basis functions for elliptic interface problems

被引:0
|
作者
Guan, Hongbo [1 ]
Zhang, Zhimin [2 ,3 ]
Zhu, Huiqing [4 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[3] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[4] Univ Southern Mississippi, Sch Math & Nat Sci, Hattiesburg, MS 39406 USA
关键词
Interface problems; Immersed finite element method; Basis functions;
D O I
10.1016/j.aml.2020.106660
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the structure of basis functions in the bilinear immersed finite element space for two dimensional elliptic interface problems. On a rectangular interface element, each immersed basis function can be decomposed into a standard bilinear basis function and a corresponding bubble function, which provides another perspective on the nature of immersed basis functions. Detailed expressions of these bubble functions are presented on the reference element. The same pattern can be carried out for other immersed finite element spaces in a similar manner. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A Nonconforming Immersed Finite Element Method for Elliptic Interface Problems
    Tao Lin
    Dongwoo Sheen
    Xu Zhang
    [J]. Journal of Scientific Computing, 2019, 79 : 442 - 463
  • [2] An immersed finite element method for elliptic interface problems on surfaces
    Guo, Changyin
    Xiao, Xufeng
    Feng, Xinlong
    Tan, Zhijun
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 131 : 54 - 67
  • [3] The immersed finite volume element methods for the elliptic interface problems
    Ewing, RE
    Li, ZL
    Lin, T
    Lin, YP
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 50 (1-4) : 63 - 76
  • [4] Nonconforming immersed finite element spaces for elliptic interface problems
    Guo, Ruchi
    Lin, Tao
    Zhang, Xu
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 2002 - 2016
  • [5] A Nonconforming Immersed Finite Element Method for Elliptic Interface Problems
    Lin, Tao
    Sheen, Dongwoo
    Zhang, Xu
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 442 - 463
  • [6] The adaptive immersed interface finite element method for elliptic and Maxwell interface problems
    Chen, Zhiming
    Xiao, Yuanming
    Zhang, Linbo
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (14) : 5000 - 5019
  • [7] Locally Conservative Immersed Finite Element Method for Elliptic Interface Problems
    Jo, Gwanghyun
    Kwak, Do Y.
    Lee, Young-Ju
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
  • [8] A MODIFIED IMMERSED FINITE VOLUME ELEMENT METHOD FOR ELLIPTIC INTERFACE PROBLEMS
    Wang, Q.
    Zhang, Z.
    [J]. ANZIAM JOURNAL, 2020, 62 (01): : 42 - 61
  • [9] A stabilized immersed finite volume element method for elliptic interface problems
    Wang, Quanxiang
    Zhang, Zhiyue
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 143 : 75 - 87
  • [10] Multigrid Algorithm for Immersed Finite Element Discretizations of Elliptic Interface Problems
    Chu, Hanyu
    Song, Yongzhong
    Ji, Haifeng
    Cai, Ying
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)