Localized harmonic characteristic basis functions for multiscale finite element methods

被引:0
|
作者
Leonardo A. Poveda
Juan Galvis
Victor M. Calo
机构
[1] Universidade de São Paulo,Departamento de Matemática Aplicada, Instituto de Matemática e Estatística
[2] Universidad Nacional de Colombia,Departamento de Matemáticas
[3] Curtin University,Applied Geology Department, Western Australian School of Mines
[4] Mineral Resources,undefined
[5] Commonwealth Scientific and Industrial Research Organisation (CSIRO),undefined
来源
关键词
Elliptic equation; Asymptotic expansions; High-contrast coefficients; Multiscale finite element method; Harmonic characteristic function; 35Q35; 65M60; 35J50;
D O I
暂无
中图分类号
学科分类号
摘要
We solve elliptic systems of equations posed on highly heterogeneous materials. Examples of this class of problems are composite structures and geological processes. We focus on a model problem which is a second-order elliptic equation with discontinuous coefficients. These coefficients represent the conductivity of a composite material. We assume a background with a low conductivity that contains inclusions with different thermal properties. Under this scenario, we design a multiscale finite element method to efficiently approximate solutions. The method is based on an asymptotic expansion of the solution in terms of the ratio between the conductivities. The resulting method constructs (locally) finite element basis functions (one for each inclusion). These bases generate the multiscale finite element space where the approximation of the solution is computed. Numerical experiments show the good performance of the proposed methodology.
引用
收藏
页码:1986 / 2000
页数:14
相关论文
共 50 条
  • [1] Localized harmonic characteristic basis functions for multiscale finite element methods
    Poveda, Leonardo A.
    Galvis, Juan
    Calo, Victor M.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 1986 - 2000
  • [2] REDUCED BASIS MULTISCALE FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS
    Hesthaven, Jan S.
    Zhang, Shun
    Zhu, Xueyu
    [J]. MULTISCALE MODELING & SIMULATION, 2015, 13 (01): : 316 - 337
  • [3] Multiscale finite element methods for high-contrast problems using local spectral basis functions
    Efendiev, Yalchin
    Galvis, Juan
    Wu, Xiao-Hui
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) : 937 - 955
  • [4] Reduced multiscale finite element basis methods for elliptic PDEs with parameterized inputs
    Jiang, Lijian
    Li, Qiuqi
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 : 101 - 120
  • [5] Multiscale model reduction with generalized multiscale finite element methods
    Efendiev, Yalchin
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL IV, 2014, : 749 - 766
  • [6] A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions
    Yu, Jiaping
    Zheng, Haibiao
    Shi, Feng
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 70 (06) : 793 - 804
  • [7] Nonconforming generalized multiscale finite element methods
    Lee, Chak Shing
    Sheen, Dongwoo
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 215 - 229
  • [8] Generalized multiscale finite element methods (GMsFEM)
    Efendiev, Yalchin
    Galvis, Juan
    Hou, Thomas Y.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 251 : 116 - 135
  • [9] On the finite-element approximation of ∞-harmonic functions
    Pryer, Tristan
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (04) : 819 - 834
  • [10] Piecewise linear finite element methods are not localized
    Demlow, A
    [J]. MATHEMATICS OF COMPUTATION, 2004, 73 (247) : 1195 - 1201