Algorithm 839: FIAT, a new paradigm for computing finite element basis functions

被引:107
|
作者
Kirby, RC [1 ]
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
来源
关键词
algorithms; languages; reliability; finite elements; high order methods; linear algebra; !text type='Python']Python[!/text;
D O I
10.1145/1039813.1039820
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Much of finite element computation is constrained by the difficulty of evaluating high-order nodal basis functions. While most codes rely on explicit formulae for these basis functions, we present a new approach that allows us to construct a general class of finite element basis functions from orthonormal polynomials and evaluate and differentiate them at any points. This approach relies on fundamental ideas from linear algebra and is implemented in Python using several object-oriented and functional programming techniques.
引用
收藏
页码:502 / 516
页数:15
相关论文
共 50 条
  • [1] A note on the finite element method with singular basis functions
    Kaneko, H
    Padilla, PA
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (04) : 491 - 495
  • [2] The finite volume element method with quadratic basis functions
    Liebau, F
    [J]. COMPUTING, 1996, 57 (04) : 281 - 299
  • [3] Decohesion finite element with enriched basis functions for delamination
    Guiamatsia, I.
    Ankersen, J. K.
    Davies, G. A. O.
    Iannucci, L.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (15-16) : 2616 - 2624
  • [4] Basis Functions With Divergence Constraints for the Finite Element Method
    Pinciuc, C. M.
    Konrad, A.
    Lavers, J. D.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (04)
  • [5] Basis Functions for Divergence Constraints in the Finite Element Method
    Pinciuc, Chris M.
    Konrad, Adalbert
    Lavers, John Douglas
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3421 - 3424
  • [6] NEW BASIS FUNCTIONS AND COMPUTATIONAL PROCEDURES FOR P-VERSION FINITE-ELEMENT ANALYSIS
    CARNEVALI, P
    MORRIS, RB
    TSUJI, Y
    TAYLOR, G
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (22) : 3759 - 3779
  • [7] A new algorithm of constructing the basis finite automaton
    Melnikov, B
    Melnikova, A
    [J]. INFORMATICA, 2002, 13 (03) : 299 - 310
  • [8] Finite element basis functions for nested meshes of nonuniform refinement level
    Hill, V
    Farle, O
    Dyczij-Edlinger, R
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) : 981 - 984
  • [9] Computed Basis Functions and the Nonconforming Voxel Finite-Element Method
    Nazari, Moein
    Webb, Jon P.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 597 - 600
  • [10] Extraction of finite element basis functions from the cellular topology of meshes
    Doucet, Cedric
    Charpentier, Isabelle
    Coulomb, Jean-Louis
    Guerin, Christophe
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 726 - 729