Algorithm 839: FIAT, a new paradigm for computing finite element basis functions

被引:107
|
作者
Kirby, RC [1 ]
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
来源
关键词
algorithms; languages; reliability; finite elements; high order methods; linear algebra; !text type='Python']Python[!/text;
D O I
10.1145/1039813.1039820
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Much of finite element computation is constrained by the difficulty of evaluating high-order nodal basis functions. While most codes rely on explicit formulae for these basis functions, we present a new approach that allows us to construct a general class of finite element basis functions from orthonormal polynomials and evaluate and differentiate them at any points. This approach relies on fundamental ideas from linear algebra and is implemented in Python using several object-oriented and functional programming techniques.
引用
收藏
页码:502 / 516
页数:15
相关论文
共 50 条
  • [21] A new optimal algorithm for computing Size Functions of shapes
    d'Amico, M
    [J]. PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : A107 - A110
  • [22] Spurious solutions in mixed finite element method for Maxwell's equations: Dispersion analysis and new basis functions
    Tobon, Luis
    Chen, Jiefu
    Liu, Qing Huo
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (19) : 7300 - 7310
  • [23] A NEW THIN PLATE FINITE-ELEMENT BY BASIS TRANSFORMATION
    MOHR, GA
    MOHR, RS
    [J]. COMPUTERS & STRUCTURES, 1986, 22 (03) : 239 - 243
  • [24] Increasing the efficiency of the use of wavelet-like finite element basis functions
    Tuksinvarajan, S
    Hutchcraft, WE
    Gordon, RK
    [J]. PROCEEDINGS OF THE THIRTY-FOURTH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2002, : 142 - 146
  • [25] Finite element method for solving the Dirac eigenvalue problem with linear basis functions
    Almanasreh, Hasan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 1199 - 1211
  • [26] A Structured Grid Finite-Element Method Using Computed Basis Functions
    Nazari, Moein
    Webb, Jon P.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (03) : 1215 - 1223
  • [27] Ray tracing in a finite-element domain using nodal basis functions
    Schrader, Karl N.
    Subia, Samuel R.
    Myre, John W.
    Summers, Kenneth L.
    [J]. APPLIED OPTICS, 2014, 53 (24) : F10 - F20
  • [28] Finite element time domain method using piecewise constant basis functions
    Artuzi, WA
    [J]. PROCEEDINGS OF THE INTERNATIONAL 2003 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE - IMOC 2003, VOLS I AND II, 2003, : 1029 - 1032
  • [29] Hierarchical Additive Basis Functions for the Finite-Element Treatment of Corner Singularities
    Graglia, Roberto D.
    Peterson, Andrew F.
    Matekovits, Ladislau
    Petrini, Paolo
    [J]. ELECTROMAGNETICS, 2014, 34 (3-4) : 171 - 198
  • [30] An Interpolation Problem Arising in a Coupling of the Finite Element Method with Holomorphic Basis Functions
    Guerlebeck, K.
    Kaehler, U.
    Legatiuk, D.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648