Algorithm 839: FIAT, a new paradigm for computing finite element basis functions

被引:107
|
作者
Kirby, RC [1 ]
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
来源
关键词
algorithms; languages; reliability; finite elements; high order methods; linear algebra; !text type='Python']Python[!/text;
D O I
10.1145/1039813.1039820
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Much of finite element computation is constrained by the difficulty of evaluating high-order nodal basis functions. While most codes rely on explicit formulae for these basis functions, we present a new approach that allows us to construct a general class of finite element basis functions from orthonormal polynomials and evaluate and differentiate them at any points. This approach relies on fundamental ideas from linear algebra and is implemented in Python using several object-oriented and functional programming techniques.
引用
收藏
页码:502 / 516
页数:15
相关论文
共 50 条
  • [11] Weak formulation of finite element method using wavelet basis functions
    Ho, SL
    Yang, SY
    Wong, HC
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (05) : 3203 - 3207
  • [12] Computed Basis Functions for Finite Element Analysis Based on Tomographic Data
    Gu, Huanhuan
    Gotman, Jean
    Webb, Jon P.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (09) : 2498 - 2505
  • [13] Localized harmonic characteristic basis functions for multiscale finite element methods
    Leonardo A. Poveda
    Juan Galvis
    Victor M. Calo
    [J]. Computational and Applied Mathematics, 2018, 37 : 1986 - 2000
  • [14] A new finite element paradigm to solve contact problems with roughness
    Bonari, Jacopo
    Paggi, Marco
    Dini, Daniele
    [J]. International Journal of Solids and Structures, 2022, 253
  • [15] Specialized finite element basis functions for mid-frequency simulations
    Goldsberry, Benjamin M.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (03):
  • [16] A note on the immersed finite element basis functions for elliptic interface problems
    Guan, Hongbo
    Zhang, Zhimin
    Zhu, Huiqing
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 115
  • [17] BASIS SET OF FUNCTIONS FOR CURVED ELEMENTS IN FINITE-ELEMENT METHOD
    CECCHI, MM
    PICA, A
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1977, 20 (02): : 151 - 162
  • [18] Localized harmonic characteristic basis functions for multiscale finite element methods
    Poveda, Leonardo A.
    Galvis, Juan
    Calo, Victor M.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 1986 - 2000
  • [19] A new finite element rolling contact algorithm
    Nackenhorst, U
    [J]. COMPUTATIONAL METHODS IN CONTACT MECHANICS IV, 1999, : 497 - 504
  • [20] An improved algorithm for developing 'special' finite element shape functions
    Dydo, JR
    Busby, HR
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1997, 13 (09): : 687 - 693