SCALING LIMITS FOR SUB-BALLISTIC BIASED RANDOM WALKS IN RANDOM CONDUCTANCES

被引:6
|
作者
Fribergh, Alexander [1 ]
Kious, Daniel [2 ]
机构
[1] Univ Montreal, DMS, Pavillon Andre Aisenstadt,2920, Montreal, PQ H3T 1J4, Canada
[2] New York Univ Shanghai, 1555 Century Ave, Shanghai 200122, Peoples R China
来源
ANNALS OF PROBABILITY | 2018年 / 46卷 / 02期
关键词
Random walks in random environments; random conductances; scaling limit; trap model; zero-speed; QUENCHED INVARIANCE-PRINCIPLES; PERCOLATION; CONVERGENCE; DIFFUSIONS; DYNAMICS; SPEED;
D O I
10.1214/16-AOP1159
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider biased random walks in positive random conductances on the d-dimensional lattice in the zero-speed regime and study their scaling limits. We obtain a functional law of large numbers for the position of the walker, properly rescaled. Moreover, we state a functional central limit theorem where an atypical process, related to the fractional kinetics, appears in the limit.
引用
收藏
页码:605 / 686
页数:82
相关论文
共 50 条
  • [1] Scaling of Sub-Ballistic 1D Random Walks Among Biased Random Conductances
    Berger, Q.
    Salvi, M.
    [J]. MARKOV PROCESSES AND RELATED FIELDS, 2019, 25 (01) : 171 - 187
  • [2] Scaling limit of sub-ballistic 1D random walk among biased conductances: a story of wells and walls
    Berger, Quentin
    Salvi, Michele
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
  • [3] Hydrodynamic limit for a system of independent, sub-ballistic random walks in a common random environment
    Jara, Milton
    Peterson, Jonathon
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 1747 - 1792
  • [4] AGING AND QUENCHED LOCALIZATION FOR ONE-DIMENSIONAL RANDOM WALKS IN RANDOM ENVIRONMENT IN THE SUB-BALLISTIC REGIME
    Enriquez, Nathanael
    Sabot, Christophe
    Zindy, Olivier
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2009, 137 (03): : 423 - 452
  • [5] Sub-ballistic random walk in Dirichlet environment
    Bouchet, Elodie
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 25
  • [6] Limit theorem for sub-ballistic Random Walks in Dirichlet Environment in dimension d > 3
    Poudevigne-Auboiron, Remy
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29 : 1 - 66
  • [7] BALLISTIC AND SUB-BALLISTIC MOTION OF INTERFACES IN A FIELD OF RANDOM OBSTACLES
    Dondl, Patrick W.
    Scheutzow, Michael
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (05): : 3189 - 3200
  • [8] SCALING IN BIASED RANDOM-WALKS
    HALLEY, JW
    NAKANISHI, H
    SUNDARARAJAN, R
    [J]. PHYSICAL REVIEW B, 1985, 31 (01): : 293 - 298
  • [9] Maximum likelihood estimation in the context of a sub-ballistic random walk in a parametric random environment
    Falconnet M.
    Gloter A.
    Loukianova D.
    [J]. Mathematical Methods of Statistics, 2014, 23 (3) : 159 - 175
  • [10] Critical scaling in standard biased random walks
    Anteneodo, C.
    Morgado, W. A. M.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (18)