SCALING LIMITS FOR SUB-BALLISTIC BIASED RANDOM WALKS IN RANDOM CONDUCTANCES

被引:7
|
作者
Fribergh, Alexander [1 ]
Kious, Daniel [2 ]
机构
[1] Univ Montreal, DMS, Pavillon Andre Aisenstadt,2920, Montreal, PQ H3T 1J4, Canada
[2] New York Univ Shanghai, 1555 Century Ave, Shanghai 200122, Peoples R China
来源
ANNALS OF PROBABILITY | 2018年 / 46卷 / 02期
关键词
Random walks in random environments; random conductances; scaling limit; trap model; zero-speed; QUENCHED INVARIANCE-PRINCIPLES; PERCOLATION; CONVERGENCE; DIFFUSIONS; DYNAMICS; SPEED;
D O I
10.1214/16-AOP1159
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider biased random walks in positive random conductances on the d-dimensional lattice in the zero-speed regime and study their scaling limits. We obtain a functional law of large numbers for the position of the walker, properly rescaled. Moreover, we state a functional central limit theorem where an atypical process, related to the fractional kinetics, appears in the limit.
引用
收藏
页码:605 / 686
页数:82
相关论文
共 50 条