SCALING LIMITS FOR SUB-BALLISTIC BIASED RANDOM WALKS IN RANDOM CONDUCTANCES

被引:7
|
作者
Fribergh, Alexander [1 ]
Kious, Daniel [2 ]
机构
[1] Univ Montreal, DMS, Pavillon Andre Aisenstadt,2920, Montreal, PQ H3T 1J4, Canada
[2] New York Univ Shanghai, 1555 Century Ave, Shanghai 200122, Peoples R China
来源
ANNALS OF PROBABILITY | 2018年 / 46卷 / 02期
关键词
Random walks in random environments; random conductances; scaling limit; trap model; zero-speed; QUENCHED INVARIANCE-PRINCIPLES; PERCOLATION; CONVERGENCE; DIFFUSIONS; DYNAMICS; SPEED;
D O I
10.1214/16-AOP1159
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider biased random walks in positive random conductances on the d-dimensional lattice in the zero-speed regime and study their scaling limits. We obtain a functional law of large numbers for the position of the walker, properly rescaled. Moreover, we state a functional central limit theorem where an atypical process, related to the fractional kinetics, appears in the limit.
引用
收藏
页码:605 / 686
页数:82
相关论文
共 50 条
  • [41] Ellipticity criteria for ballistic behavior of random walks in random environment
    Campos, David
    Ramirez, Alejandro F.
    PROBABILITY THEORY AND RELATED FIELDS, 2014, 160 (1-2) : 189 - 251
  • [42] Persistent Random Walks. II. Functional Scaling Limits
    Peggy Cénac
    Arnaud Le Ny
    Basile de Loynes
    Yoann Offret
    Journal of Theoretical Probability, 2019, 32 : 633 - 658
  • [43] Concentration under scaling limits for weakly pinned Gaussian random walks
    Erwin Bolthausen
    Tadahisa Funaki
    Tatsushi Otobe
    Probability Theory and Related Fields, 2009, 143 : 441 - 480
  • [44] Concentration under scaling limits for weakly pinned Gaussian random walks
    Bolthausen, Erwin
    Funaki, Tadahisa
    Otobe, Tatsushi
    PROBABILITY THEORY AND RELATED FIELDS, 2009, 143 (3-4) : 441 - 480
  • [45] Persistent Random Walks. II. Functional Scaling Limits
    Cenac, Peggy
    Le Ny, Arnaud
    de Loynes, Basile
    Offret, Yoann
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (02) : 633 - 658
  • [46] Fragment formation in biased random walks
    Ramola, Kabir
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [47] Time Dependent Biased Random Walks
    Haslegrave, John
    Sauerwald, Thomas
    Sylvester, John
    ACM TRANSACTIONS ON ALGORITHMS, 2022, 18 (02)
  • [48] Biased random walks on the interlacement set
    Fribergh, Alexander
    Popov, Serguei
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1341 - 1358
  • [49] Biased random walks on directed trees
    Takacs, C
    PROBABILITY THEORY AND RELATED FIELDS, 1998, 111 (01) : 123 - 139
  • [50] Biased random walks and propagation failure
    Mendez, Vicenc
    Fedotov, Sergei
    Campos, Daniel
    Horsthemke, Werner
    PHYSICAL REVIEW E, 2007, 75 (01)