Concentration under scaling limits for weakly pinned Gaussian random walks

被引:0
|
作者
Erwin Bolthausen
Tadahisa Funaki
Tatsushi Otobe
机构
[1] Universität Zürich,Institut für Mathematik
[2] The University of Tokyo,Graduate School of Mathematical Sciences
来源
关键词
Large deviation; Minimizers; Random walks; Pinning; Scaling limit; Concentration; Primary: 60K35; Secondary: 60F10; 82B41;
D O I
暂无
中图分类号
学科分类号
摘要
We study scaling limits for d-dimensional Gaussian random walks perturbed by an attractive force toward a certain subspace of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}, especially under the critical situation that the rate functional of the corresponding large deviation principle admits two minimizers. We obtain different type of limits, in a positive recurrent regime, depending on the co-dimension of the subspace and the conditions imposed at the final time under the presence or absence of a wall. The motivation comes from the study of polymers or (1 + 1)-dimensional interfaces with δ-pinning.
引用
收藏
页码:441 / 480
页数:39
相关论文
共 50 条
  • [1] Concentration under scaling limits for weakly pinned Gaussian random walks
    Bolthausen, Erwin
    Funaki, Tadahisa
    Otobe, Tatsushi
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2009, 143 (3-4) : 441 - 480
  • [2] Scaling limits for weakly pinned random walks with two large deviation minimizers
    Funaki, Tadahisa
    Otobe, Tatsushi
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2010, 62 (03) : 1005 - 1041
  • [3] Scaling limits for weakly pinned Gaussian random fields under the presence of two possible candidates
    Bolthausen, Erwin
    Chiyonobu, Taizo
    Funaki, Tadahisa
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (04) : 1359 - 1412
  • [4] Convex hulls of random walks and their scaling limits
    Wade, Andrew R.
    Xu, Chang
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) : 4300 - 4320
  • [5] Backbone scaling limits for random walks on random critical trees
    Ben Arous, Gerard
    Cabezas, Manuel
    Fribergh, Alexander
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1814 - 1848
  • [6] On the range of pinned random walks
    Hamana, Yuji
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2006, 58 (03) : 329 - 357
  • [7] Scaling limits of recurrent excited random walks on integers
    Dolgopyat, Dmitry
    Kosygina, Elena
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 14
  • [8] SCALING LIMITS FOR SIMPLE RANDOM WALKS ON RANDOM ORDERED GRAPH TREES
    Croydon, D. A.
    [J]. ADVANCES IN APPLIED PROBABILITY, 2010, 42 (02) : 528 - 558
  • [9] Scaling limits of tree-valued branching random walks
    Duquesne, Thomas
    Khanfir, Robin
    Lin, Shen
    Torri, Niccole
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [10] Densities of Scaling Limits of Coupled Continuous Time Random Walks
    Marcin Magdziarz
    Tomasz Zorawik
    [J]. Fractional Calculus and Applied Analysis, 2016, 19 : 1488 - 1506