Scaling limits for weakly pinned Gaussian random fields under the presence of two possible candidates

被引:0
|
作者
Bolthausen, Erwin [1 ]
Chiyonobu, Taizo [2 ]
Funaki, Tadahisa [3 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] Kwansei Gakuin Univ, Dept Math, Sanda City, Hyogo 6691337, Japan
[3] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
基金
瑞士国家科学基金会;
关键词
Gaussian field; interface model; pinning; scaling limit; large deviation; minimizers; RANDOM-WALKS;
D O I
10.2969/jmsj/06741359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the scaling limit and prove the law of large numbers for weakly pinned Gaussian random fields under the critical situation that two possible candidates of the limits exist at the level of large deviation principle. This paper extends the results of [3], [7] for one dimensional fields to higher dimensions: d >= 3, at least if the strength of pinning is sufficiently large.
引用
收藏
页码:1359 / 1412
页数:54
相关论文
共 50 条
  • [1] Concentration under scaling limits for weakly pinned Gaussian random walks
    Bolthausen, Erwin
    Funaki, Tadahisa
    Otobe, Tatsushi
    PROBABILITY THEORY AND RELATED FIELDS, 2009, 143 (3-4) : 441 - 480
  • [2] Concentration under scaling limits for weakly pinned Gaussian random walks
    Erwin Bolthausen
    Tadahisa Funaki
    Tatsushi Otobe
    Probability Theory and Related Fields, 2009, 143 : 441 - 480
  • [3] Scaling limits for weakly pinned random walks with two large deviation minimizers
    Funaki, Tadahisa
    Otobe, Tatsushi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2010, 62 (03) : 1005 - 1041
  • [4] SCALING LIMITS OF GAUSSIAN VECTOR FIELDS
    PITT, LD
    JOURNAL OF MULTIVARIATE ANALYSIS, 1978, 8 (01) : 45 - 54
  • [5] Reciprocal Fields: A Model for Random Fields Pinned to Two Boundaries
    Vats, Divyanshu
    Moura, Jose M. F.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 942 - 947
  • [6] SCALING LIMITS FOR POINT RANDOM-FIELDS
    BURTON, RM
    WAYMIRE, E
    JOURNAL OF MULTIVARIATE ANALYSIS, 1984, 15 (02) : 237 - 251
  • [7] EXPLICIT CONSTRUCTION OF OPERATOR SCALING GAUSSIAN RANDOM FIELDS
    Clausel, M.
    Vedel, B.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2011, 19 (01) : 101 - 111
  • [8] RENORMALIZED FIELD-THEORY OF WEAKLY ANISOTROPIC ANTIFERROMAGNETS UNDER GAUSSIAN RANDOM-FIELDS
    OKU, M
    PROGRESS OF THEORETICAL PHYSICS, 1982, 67 (05): : 1353 - 1364
  • [9] INVARIANCE PRINCIPLES FOR OPERATOR-SCALING GAUSSIAN RANDOM FIELDS
    Bierme, Hermine
    Durieu, Olivier
    Wang, Yizao
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (02): : 1190 - 1234
  • [10] Operator-scaling Gaussian random fields via aggregation
    Shen, Yi
    Wang, Yizao
    BERNOULLI, 2020, 26 (01) : 500 - 530