Scaling limits for weakly pinned Gaussian random fields under the presence of two possible candidates

被引:0
|
作者
Bolthausen, Erwin [1 ]
Chiyonobu, Taizo [2 ]
Funaki, Tadahisa [3 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] Kwansei Gakuin Univ, Dept Math, Sanda City, Hyogo 6691337, Japan
[3] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
基金
瑞士国家科学基金会;
关键词
Gaussian field; interface model; pinning; scaling limit; large deviation; minimizers; RANDOM-WALKS;
D O I
10.2969/jmsj/06741359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the scaling limit and prove the law of large numbers for weakly pinned Gaussian random fields under the critical situation that two possible candidates of the limits exist at the level of large deviation principle. This paper extends the results of [3], [7] for one dimensional fields to higher dimensions: d >= 3, at least if the strength of pinning is sufficiently large.
引用
收藏
页码:1359 / 1412
页数:54
相关论文
共 50 条
  • [11] Scaling limits for random fields with long-range dependence
    Kaj, Ingemar
    Leskela, Lasse
    Norros, Ilkka
    Schmidt, Volker
    ANNALS OF PROBABILITY, 2007, 35 (02): : 528 - 550
  • [12] Local scaling limits of Levy driven fractional random fields
    Pilipauskaite, Vytaute
    Surgailis, Donatas
    BERNOULLI, 2022, 28 (04) : 2833 - 2861
  • [13] Fast and exact synthesis of some operator scaling Gaussian random fields
    Bierme, Hermine
    Lacaux, Celine
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (01) : 293 - 320
  • [14] Scaling transition for long-range dependent Gaussian random fields
    Puplinskaite, Donata
    Surgailis, Donatas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (06) : 2256 - 2271
  • [15] Exact moduli of continuity for operator-scaling Gaussian random fields
    Li, Yuqiang
    Wang, Wensheng
    Xiao, Yimin
    BERNOULLI, 2015, 21 (02) : 930 - 956
  • [16] Anisotropic scaling limits of long-range dependent random fields
    Donatas Surgailis
    Lithuanian Mathematical Journal, 2019, 59 : 595 - 615
  • [17] Anisotropic scaling limits of long-range dependent random fields
    Surgailis, Donatas
    LITHUANIAN MATHEMATICAL JOURNAL, 2019, 59 (04) : 595 - 615
  • [18] Scaling limits and fluctuations for random growth under capacity rescaling
    Liddle, George
    Turner, Amanda
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (02): : 980 - 1015
  • [19] Scaling limits for minimal and random spanning trees in two dimensions
    Aizenman, M
    Burchard, A
    Newman, CM
    Wilson, DB
    RANDOM STRUCTURES & ALGORITHMS, 1999, 15 (3-4) : 319 - 367
  • [20] Statistics of peaks of weakly non-Gaussian random fields: Effects of bispectrum in two- and three-dimensions
    Matsubara, Takahiko
    PHYSICAL REVIEW D, 2020, 101 (04)