Scaling limits for weakly pinned Gaussian random fields under the presence of two possible candidates

被引:0
|
作者
Bolthausen, Erwin [1 ]
Chiyonobu, Taizo [2 ]
Funaki, Tadahisa [3 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] Kwansei Gakuin Univ, Dept Math, Sanda City, Hyogo 6691337, Japan
[3] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
基金
瑞士国家科学基金会;
关键词
Gaussian field; interface model; pinning; scaling limit; large deviation; minimizers; RANDOM-WALKS;
D O I
10.2969/jmsj/06741359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the scaling limit and prove the law of large numbers for weakly pinned Gaussian random fields under the critical situation that two possible candidates of the limits exist at the level of large deviation principle. This paper extends the results of [3], [7] for one dimensional fields to higher dimensions: d >= 3, at least if the strength of pinning is sufficiently large.
引用
收藏
页码:1359 / 1412
页数:54
相关论文
共 50 条