Scaling priors for intrinsic Gaussian Markov random fields applied to blood pressure data

被引:0
|
作者
Spyropoulou, Maria-Zafeiria [1 ]
Bentham, James [2 ]
机构
[1] Univ Kent, Sch Sport & Exercise Sci, Canterbury CT2 7FS, England
[2] Univ Kent, Sch Stat Math & Actuarial Sci, Canterbury, England
关键词
hyperpriors; intrinsic Gaussian Markov random fields; MCMC; precision; scaling; two-dimensional data;
D O I
10.1111/stan.12330
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An Intrinsic Gaussian Markov Random Field (IGMRF) can be used to induce conditional dependence in Bayesian hierarchical models. IGMRFs have both a precision matrix, which defines the neighborhood structure of the model, and a precision, or scaling, parameter. Previous studies have shown the importance of selecting the prior for this scaling parameter appropriately for different types of IGMRF, as it can have a substantial impact on posterior estimates. Here, we focus on cases in one and two dimensions, where tuning of the prior is achieved by mapping it to the marginal SD of an IGMRF of corresponding dimensionality. We compare the effects of scaling various IGMRFs, including an application to real two-dimensional blood pressure data using MCMC methods.
引用
收藏
页码:491 / 504
页数:14
相关论文
共 50 条
  • [1] Scaling intrinsic Gaussian Markov random field priors in spatial modelling
    Sorbye, Sigrunn Holbek
    Rue, Havard
    SPATIAL STATISTICS, 2014, 8 : 39 - 51
  • [2] Fitting Gaussian Markov random fields to Gaussian fields
    Rue, H
    Tjelmeland, H
    SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (01) : 31 - 49
  • [3] Approximate reference priors for Gaussian random fields
    De Oliveira, Victor
    Han, Zifei
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (01) : 296 - 326
  • [4] GAUSSIAN MARKOV RANDOM FIELD PRIORS FOR INVERSE PROBLEMS
    Bardsley, Johnathan M.
    INVERSE PROBLEMS AND IMAGING, 2013, 7 (02) : 397 - 416
  • [5] LEARNING IN GAUSSIAN MARKOV RANDOM FIELDS
    Riedl, Thomas J.
    Singer, Andrew C.
    Choi, Jun Won
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3070 - 3073
  • [6] Exact optimization for Markov random fields with convex priors
    Ishikawa, H
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (10) : 1333 - 1336
  • [7] Bayesian nonparametric priors for hidden Markov random fields
    Hongliang Lü
    Julyan Arbel
    Florence Forbes
    Statistics and Computing, 2020, 30 : 1015 - 1035
  • [8] Bayesian nonparametric priors for hidden Markov random fields
    Lu, Hongliang
    Arbel, Julyan
    Forbes, Florence
    STATISTICS AND COMPUTING, 2020, 30 (04) : 1015 - 1035
  • [9] Constructing Priors that Penalize the Complexity of Gaussian Random Fields
    Fuglstad, Geir-Arne
    Simpson, Daniel
    Lindgren, Finn
    Rue, Havard
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (525) : 445 - 452
  • [10] Fast kriging of large data sets with Gaussian!Markov random fields
    Hartman, Linda
    Hossjer, Ola
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (05) : 2331 - 2349