Scaling priors for intrinsic Gaussian Markov random fields applied to blood pressure data

被引:0
|
作者
Spyropoulou, Maria-Zafeiria [1 ]
Bentham, James [2 ]
机构
[1] Univ Kent, Sch Sport & Exercise Sci, Canterbury CT2 7FS, England
[2] Univ Kent, Sch Stat Math & Actuarial Sci, Canterbury, England
关键词
hyperpriors; intrinsic Gaussian Markov random fields; MCMC; precision; scaling; two-dimensional data;
D O I
10.1111/stan.12330
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An Intrinsic Gaussian Markov Random Field (IGMRF) can be used to induce conditional dependence in Bayesian hierarchical models. IGMRFs have both a precision matrix, which defines the neighborhood structure of the model, and a precision, or scaling, parameter. Previous studies have shown the importance of selecting the prior for this scaling parameter appropriately for different types of IGMRF, as it can have a substantial impact on posterior estimates. Here, we focus on cases in one and two dimensions, where tuning of the prior is achieved by mapping it to the marginal SD of an IGMRF of corresponding dimensionality. We compare the effects of scaling various IGMRFs, including an application to real two-dimensional blood pressure data using MCMC methods.
引用
收藏
页码:491 / 504
页数:14
相关论文
共 50 条
  • [21] Gaussian Markov Random Fields for Fusion in Information Form
    Sun, Liye
    Vidal-Calleja, Teresa
    Miro, Jaime Valls
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 1840 - 1845
  • [22] Global optimization for first order Markov Random Fields with submodular priors
    Darbon, Jerome
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (16) : 3412 - 3423
  • [23] Gaussian Markov Random Fields and totally positive matrices
    Baz, Juan
    Alonso, Pedro
    Pena, Juan Manuel
    Perez-Fernandez, Raul
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 430
  • [24] Multiscale Gaussian Markov Random Fields for Writer Identificatio
    Ning, Liangshuo
    Zhou, Long
    You, Xinge
    Du, Liang
    He, Zhengyu
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, : 170 - 175
  • [25] ON THE MARKOV PROPERTY FOR CERTAIN GAUSSIAN RANDOM-FIELDS
    KOLSRUD, T
    PROBABILITY THEORY AND RELATED FIELDS, 1987, 74 (03) : 393 - 402
  • [26] Horde of Bandits using Gaussian Markov Random Fields
    Vaswani, Sharan
    Schmidt, Mark
    Lakshmanan, Laks V. S.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 690 - 699
  • [27] On Gaussian Markov random fields and Bayesian disease mapping
    MacNab, Ying C.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2011, 20 (01) : 49 - 68
  • [28] Region selection in Markov random fields: Gaussian case
    Soloveychik, Ilya
    Tarokh, Vahid
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 196
  • [29] Bayesian reference analysis for Gaussian Markov random fields
    Ferreira, Marco A. R.
    De Oliveira, Victor
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (04) : 789 - 812
  • [30] Global optimization for first order Markov Random Fields with submodular priors
    Darbon, Jerome
    COMBINATORIAL IMAGE ANALYSIS, 2008, 4958 : 229 - 237