Local scaling limits of Levy driven fractional random fields

被引:2
|
作者
Pilipauskaite, Vytaute [1 ]
Surgailis, Donatas [2 ]
机构
[1] Univ Luxembourg, Dept Math, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] Vilnius Univ, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
关键词
Fractional random field; local anisotropic scaling limit; rectangular increment; Levy random measure; scaling transition; multi self-similar random field; LINEAR RANDOM-FIELDS; STOCHASTIC-PROCESSES; AGGREGATION; TRANSITION; ROUGHNESS; THEOREMS;
D O I
10.3150/21-BEJ1439
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain a complete description of local anisotropic scaling limits for a class of fractional random fields X on R-2 written as stochastic integral with respect to infinitely divisible random measure. The scaling procedure involves increments of X over points the distance between which in the horizontal and vertical directions shrinks as O(lambda) and O(lambda(gamma)) respectively as lambda down arrow 0, for some gamma > 0. We consider two types of increments of X: usual increment and rectangular increment, leading to the respective concepts of gamma-tangent and gamma-rectangent random fields. We prove that for above X both types of local scaling limits exist for any gamma > 0 and undergo a transition, being independent of gamma > gamma(0) and gamma < gamma(0), for some gamma(0) > 0; moreover, the 'unbalanced' scaling limits (gamma not equal gamma(0)) are (H-1, H-2)-multi self-similar with one of H-i, i = 1, 2, equal to 0 or 1. The paper extends Pilipauskaite and Surgailis (Stochastic Process. Appl. 127 (2017) 2751-2779) and Surgailis (Stochastic Process. Appl. 130 (2020) 7518-7546) on largescale anisotropic scaling of random fields on Z(2) and Benassi et al. (Bernoulli 10 (2004) 357-373) on 1-tangent limits of isotropic fractional Levy random fields.
引用
收藏
页码:2833 / 2861
页数:29
相关论文
共 50 条
  • [1] SCALING LIMITS FOR POINT RANDOM-FIELDS
    BURTON, RM
    WAYMIRE, E
    JOURNAL OF MULTIVARIATE ANALYSIS, 1984, 15 (02) : 237 - 251
  • [2] Levy-driven causal CARMA random fields
    Viet Son Pham
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (12) : 7547 - 7574
  • [3] Scaling limits for symmetric Ito-Levy processes in random medium
    Rhodes, Remi
    Vargas, Vincent
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (12) : 4004 - 4033
  • [4] Fractional Levy Fields
    Cohen, Serge
    LEVY MATTERS II: RECENT PROGRESS IN THEORY AND APPLICATIONS: FRACTIONAL LEVY FIELDS, AND SCALE FUNCTIONS, 2012, 2061 : 1 - 95
  • [5] Extremes of Levy-driven spatial random fields with regularly varying Levy measure
    Ronn-Nielsen, Anders
    Stehr, Mads
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 150 : 19 - 49
  • [6] Scaling limits for random fields with long-range dependence
    Kaj, Ingemar
    Leskela, Lasse
    Norros, Ilkka
    Schmidt, Volker
    ANNALS OF PROBABILITY, 2007, 35 (02): : 528 - 550
  • [7] Fractional Equations for the Scaling Limits of Levy Walks with Position-Dependent Jump Distributions
    Kolokoltsov, Vassili N.
    MATHEMATICS, 2023, 11 (11)
  • [8] SCALING LIMITS OF OVERSHOOTING LEVY WALKS
    Magdziarz, Marcin
    Teuerle, Marek
    Zebrowski, Piotr
    ACTA PHYSICA POLONICA B, 2012, 43 (05): : 1111 - 1132
  • [9] LEVY,P RANDOM FIELDS
    MOROZOVA, EA
    CHENTSOV, NN
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (01): : 153 - &
  • [10] Scaling Limits of Solutions of Linear Stochastic Differential Equations Driven by Levy White Noises
    Fageot, Julien
    Unser, Michael
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (03) : 1166 - 1189