EXPLICIT CONSTRUCTION OF OPERATOR SCALING GAUSSIAN RANDOM FIELDS

被引:21
|
作者
Clausel, M. [1 ]
Vedel, B. [2 ]
机构
[1] Univ Lyon, CNRS, UMR 5208, Inst Camille Jordan,INSA Lyon, F-69621 Villeurbanne, France
[2] Univ Europeene Bretagne, Univ Bretagne Sud, Lab Math & Applicat Math, Ctr Yves Coppens, F-56017 Vannes, France
关键词
Operator Scaling Gaussian Random Field; Anisotropy; Pseudo-Norms; Harmonizable Representation;
D O I
10.1142/S0218348X11005208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose an explicit way to generate a large class of Operator scaling Gaussian random fields (OSGRF). Such fields are anisotropic generalizations of self-similar fields. More specifically, we are able to construct any Gaussian field belonging to this class with given Hurst index and exponent. Our construction provides - for simulations of texture as well as for detection of anisotropies in an image - a large class of models with controlled anisotropic geometries and structures.
引用
收藏
页码:101 / 111
页数:11
相关论文
共 50 条
  • [1] INVARIANCE PRINCIPLES FOR OPERATOR-SCALING GAUSSIAN RANDOM FIELDS
    Bierme, Hermine
    Durieu, Olivier
    Wang, Yizao
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (02): : 1190 - 1234
  • [2] Operator-scaling Gaussian random fields via aggregation
    Shen, Yi
    Wang, Yizao
    [J]. BERNOULLI, 2020, 26 (01) : 500 - 530
  • [3] Fast and exact synthesis of some operator scaling Gaussian random fields
    Bierme, Hermine
    Lacaux, Celine
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (01) : 293 - 320
  • [4] Exact moduli of continuity for operator-scaling Gaussian random fields
    Li, Yuqiang
    Wang, Wensheng
    Xiao, Yimin
    [J]. BERNOULLI, 2015, 21 (02) : 930 - 956
  • [5] Operator scaling stable random fields
    Bierme, Hermine
    Meerschaert, Mark M.
    Scheffler, Hans-Peter
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (03) : 312 - 332
  • [6] Parameter estimation for operator scaling random fields
    Lim, C. Y.
    Meerschaert, M. M.
    Scheffler, H. -P.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 123 : 172 - 183
  • [7] Multi-operator scaling random fields
    Bierme, Hermine
    Lacaux, Celine
    Scheffler, Hans-Peter
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (11) : 2642 - 2677
  • [8] Hurst estimation for operator scaling random fields
    Lee, Jeonghwa
    [J]. STATISTICS & PROBABILITY LETTERS, 2021, 178
  • [9] Gaussian Fields Satisfying Simultaneous Operator Scaling Relations
    Clausel, Marianne
    [J]. RECENT DEVELOPMENTS IN FRACTALS AND RELATED FIELDS, 2010, : 327 - 341
  • [10] Holder regularity for operator scaling stable random fields
    Bierme, Hermine
    Lacaux, Celine
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (07) : 2222 - 2248