Hurst estimation for operator scaling random fields

被引:1
|
作者
Lee, Jeonghwa [1 ]
机构
[1] Truman State Univ, Dept Stat, Kirksville, MO 63501 USA
关键词
Operator scaling Gaussian random field; Hurst indices; Fractal indices; GAUSSIAN-PROCESSES;
D O I
10.1016/j.spl.2021.109188
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation method for Hurst indices in operator scaling Gaussian random field is developed. The model used in this paper has two Hurst parameters along the two orthogonal directions. The two directions are estimated first, then Hurst indices are estimated along the estimated directions. The performance of estimator is investigated theoretically and empirically. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Parameter estimation for operator scaling random fields
    Lim, C. Y.
    Meerschaert, M. M.
    Scheffler, H. -P.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 123 : 172 - 183
  • [2] Operator scaling stable random fields
    Bierme, Hermine
    Meerschaert, Mark M.
    Scheffler, Hans-Peter
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (03) : 312 - 332
  • [3] Multi-operator scaling random fields
    Bierme, Hermine
    Lacaux, Celine
    Scheffler, Hans-Peter
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (11) : 2642 - 2677
  • [4] EXPLICIT CONSTRUCTION OF OPERATOR SCALING GAUSSIAN RANDOM FIELDS
    Clausel, M.
    Vedel, B.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2011, 19 (01) : 101 - 111
  • [5] Holder regularity for operator scaling stable random fields
    Bierme, Hermine
    Lacaux, Celine
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (07) : 2222 - 2248
  • [6] INVARIANCE PRINCIPLES FOR OPERATOR-SCALING GAUSSIAN RANDOM FIELDS
    Bierme, Hermine
    Durieu, Olivier
    Wang, Yizao
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (02): : 1190 - 1234
  • [7] Operator-scaling Gaussian random fields via aggregation
    Shen, Yi
    Wang, Yizao
    [J]. BERNOULLI, 2020, 26 (01) : 500 - 530
  • [8] PIECEWISE PARAMETERISED MARKOV RANDOM FIELDS FOR SEMI-LOCAL HURST ESTIMATION
    Regli, J-B.
    Nelson, J. D. B.
    [J]. 2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1626 - 1630
  • [9] Scaling in Anti-Plane Elasticity on Random Shear Modulus Fields with Fractal and Hurst Effects
    Jetti, Yaswanth Sai
    Ostoja-Starzewski, Martin
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [10] Exact moduli of continuity for operator-scaling Gaussian random fields
    Li, Yuqiang
    Wang, Wensheng
    Xiao, Yimin
    [J]. BERNOULLI, 2015, 21 (02) : 930 - 956