Parameter estimation for operator scaling random fields

被引:7
|
作者
Lim, C. Y. [1 ]
Meerschaert, M. M. [1 ]
Scheffler, H. -P. [2 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[2] Univ Siegen, Fachbereich Math, D-57068 Siegen, Germany
基金
美国国家科学基金会;
关键词
Random field; Self-similar; Operator scaling; Hurst index; REGRESSION;
D O I
10.1016/j.jmva.2013.09.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Operator scaling random fields are useful for modeling physical phenomena with different scaling properties in each coordinate. This paper develops a general parameter estimation method for such fields which allows an arbitrary set of scaling axes. The method is based on a new approach to nonlinear regression with errors whose mean is not zero. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:172 / 183
页数:12
相关论文
共 50 条
  • [1] Hurst estimation for operator scaling random fields
    Lee, Jeonghwa
    STATISTICS & PROBABILITY LETTERS, 2021, 178
  • [2] Operator scaling stable random fields
    Bierme, Hermine
    Meerschaert, Mark M.
    Scheffler, Hans-Peter
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (03) : 312 - 332
  • [3] Multi-operator scaling random fields
    Bierme, Hermine
    Lacaux, Celine
    Scheffler, Hans-Peter
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (11) : 2642 - 2677
  • [4] Holder regularity for operator scaling stable random fields
    Bierme, Hermine
    Lacaux, Celine
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (07) : 2222 - 2248
  • [5] EXPLICIT CONSTRUCTION OF OPERATOR SCALING GAUSSIAN RANDOM FIELDS
    Clausel, M.
    Vedel, B.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2011, 19 (01) : 101 - 111
  • [6] INVARIANCE PRINCIPLES FOR OPERATOR-SCALING GAUSSIAN RANDOM FIELDS
    Bierme, Hermine
    Durieu, Olivier
    Wang, Yizao
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (02): : 1190 - 1234
  • [7] Operator-scaling Gaussian random fields via aggregation
    Shen, Yi
    Wang, Yizao
    BERNOULLI, 2020, 26 (01) : 500 - 530
  • [8] Application of operator-scaling anisotropic random fields to binary mixtures
    Anders, Denis
    Hoffmann, Alexander
    Scheffler, Hans-Peter
    Weinberg, Kerstin
    PHILOSOPHICAL MAGAZINE, 2011, 91 (29) : 3766 - 3792
  • [9] Fast and exact synthesis of some operator scaling Gaussian random fields
    Bierme, Hermine
    Lacaux, Celine
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (01) : 293 - 320
  • [10] Exact moduli of continuity for operator-scaling Gaussian random fields
    Li, Yuqiang
    Wang, Wensheng
    Xiao, Yimin
    BERNOULLI, 2015, 21 (02) : 930 - 956