Concentration under scaling limits for weakly pinned Gaussian random walks

被引:0
|
作者
Erwin Bolthausen
Tadahisa Funaki
Tatsushi Otobe
机构
[1] Universität Zürich,Institut für Mathematik
[2] The University of Tokyo,Graduate School of Mathematical Sciences
来源
关键词
Large deviation; Minimizers; Random walks; Pinning; Scaling limit; Concentration; Primary: 60K35; Secondary: 60F10; 82B41;
D O I
暂无
中图分类号
学科分类号
摘要
We study scaling limits for d-dimensional Gaussian random walks perturbed by an attractive force toward a certain subspace of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}, especially under the critical situation that the rate functional of the corresponding large deviation principle admits two minimizers. We obtain different type of limits, in a positive recurrent regime, depending on the co-dimension of the subspace and the conditions imposed at the final time under the presence or absence of a wall. The motivation comes from the study of polymers or (1 + 1)-dimensional interfaces with δ-pinning.
引用
收藏
页码:441 / 480
页数:39
相关论文
共 50 条