Persistent Random Walks. II. Functional Scaling Limits

被引:2
|
作者
Cenac, Peggy [1 ]
Le Ny, Arnaud [3 ]
de Loynes, Basile [2 ]
Offret, Yoann [1 ]
机构
[1] Univ Bourgogne Franche Comte, CNRS, IMB, UMR 5584, F-21000 Dijon, France
[2] Univ Bretagne Loire, Ensai, Campus Ker Lann, F-35172 Bruz, France
[3] Univ Paris Est, CNRS, LAMA, UMR 8050, F-94010 Creteil, France
关键词
Persistent random walks; Functional scaling limits; Arcsine Lamperti laws; Directionally reinforced random walks; Levy walks; Anomalous diffusions; TIME RANDOM-WALKS; THEOREMS;
D O I
10.1007/s10959-018-0852-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe the scaling limits of the persistent random walks (PRWs) for which the recurrence has been characterized in Cenac et al. (J. Theor. Probab. 31(1):232-243, 2018). We highlight a phase transition phenomenon with respect to the memory: depending on the tails of the persistent time distributions, the limiting process is either Markovian or non-Markovian. In the memoryless situation, the limits are classical strictly stable Levy processes of infinite variations, but the critical Cauchy case and the asymmetric situation we investigate fill some lacunae of the literature, in particular regarding directionally reinforced random walks (DRRWs). In the non-Markovian case, we extend the results of Magdziarz et al. (Stoch. Process. Appl. 125(11):4021-4038, 2015) on Levy walks (LWs) to a wider class of PRWs without renewal patterns. Finally, we clarify some misunderstanding regarding the marginal densities in the framework of DRRWs and LWs and compute them explicitly in connection with the occupation times of Lamperti's stochastic processes.
引用
收藏
页码:633 / 658
页数:26
相关论文
共 50 条
  • [1] Persistent Random Walks. II. Functional Scaling Limits
    Peggy Cénac
    Arnaud Le Ny
    Basile de Loynes
    Yoann Offret
    Journal of Theoretical Probability, 2019, 32 : 633 - 658
  • [2] On probabilities of large deviations for random walks. II. Regular exponentially decaying distributions
    Borovkov, AA
    Borovkov, KA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2004, 49 (02) : 189 - 206
  • [3] Persistent Random Walks. I. Recurrence Versus Transience
    Peggy Cénac
    Arnaud Le Ny
    Basile de Loynes
    Yoann Offret
    Journal of Theoretical Probability, 2018, 31 : 232 - 243
  • [4] Persistent Random Walks. I. Recurrence Versus Transience
    Cenac, Peggy
    Le Ny, Arnaud
    de Loynes, Basile
    Offret, Yoann
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (01) : 232 - 243
  • [5] Recurrence of multidimensional persistent random walks. Fourier and series criteria
    Cenac, Peggy
    De Loynes, Basile
    Offret, Yoann
    Rousselle, Arnaud
    BERNOULLI, 2020, 26 (02) : 858 - 892
  • [6] Convex rearrangements of random walks.
    Davydov, Y
    Vershik, AM
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1998, 34 (01): : 73 - 95
  • [7] Convex hulls of random walks and their scaling limits
    Wade, Andrew R.
    Xu, Chang
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) : 4300 - 4320
  • [8] Backbone scaling limits for random walks on random critical trees
    Ben Arous, Gerard
    Cabezas, Manuel
    Fribergh, Alexander
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1814 - 1848
  • [9] Scaling limits of recurrent excited random walks on integers
    Dolgopyat, Dmitry
    Kosygina, Elena
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 14
  • [10] SCALING LIMITS FOR SIMPLE RANDOM WALKS ON RANDOM ORDERED GRAPH TREES
    Croydon, D. A.
    ADVANCES IN APPLIED PROBABILITY, 2010, 42 (02) : 528 - 558