Persistent Random Walks. II. Functional Scaling Limits

被引:2
|
作者
Cenac, Peggy [1 ]
Le Ny, Arnaud [3 ]
de Loynes, Basile [2 ]
Offret, Yoann [1 ]
机构
[1] Univ Bourgogne Franche Comte, CNRS, IMB, UMR 5584, F-21000 Dijon, France
[2] Univ Bretagne Loire, Ensai, Campus Ker Lann, F-35172 Bruz, France
[3] Univ Paris Est, CNRS, LAMA, UMR 8050, F-94010 Creteil, France
关键词
Persistent random walks; Functional scaling limits; Arcsine Lamperti laws; Directionally reinforced random walks; Levy walks; Anomalous diffusions; TIME RANDOM-WALKS; THEOREMS;
D O I
10.1007/s10959-018-0852-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe the scaling limits of the persistent random walks (PRWs) for which the recurrence has been characterized in Cenac et al. (J. Theor. Probab. 31(1):232-243, 2018). We highlight a phase transition phenomenon with respect to the memory: depending on the tails of the persistent time distributions, the limiting process is either Markovian or non-Markovian. In the memoryless situation, the limits are classical strictly stable Levy processes of infinite variations, but the critical Cauchy case and the asymmetric situation we investigate fill some lacunae of the literature, in particular regarding directionally reinforced random walks (DRRWs). In the non-Markovian case, we extend the results of Magdziarz et al. (Stoch. Process. Appl. 125(11):4021-4038, 2015) on Levy walks (LWs) to a wider class of PRWs without renewal patterns. Finally, we clarify some misunderstanding regarding the marginal densities in the framework of DRRWs and LWs and compute them explicitly in connection with the occupation times of Lamperti's stochastic processes.
引用
收藏
页码:633 / 658
页数:26
相关论文
共 50 条
  • [41] A scaling law for random walks on networks
    Theodore J. Perkins
    Eric Foxall
    Leon Glass
    Roderick Edwards
    Nature Communications, 5
  • [42] Persistent random walks in stationary environment
    Alili, S
    JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (3-4) : 469 - 494
  • [43] Weak limits for quantum random walks
    Grimmett, G
    Janson, S
    Scudo, PF
    PHYSICAL REVIEW E, 2004, 69 (02): : 026119 - 1
  • [44] Search along persistent random walks
    Friedrich, Benjamin M.
    PHYSICAL BIOLOGY, 2008, 5 (02)
  • [45] Persistent Random Walks in Stationary Environment
    S. Alili
    Journal of Statistical Physics, 1999, 94 : 469 - 494
  • [46] Further scaling exponents of random walks in random sceneries
    Piau, D
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 112 (01) : 145 - 155
  • [47] On probabilities of large deviations for random walks. I. Regularly varying distribution tails
    Borovkov, AA
    Borovkov, KA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2001, 46 (02) : 193 - 213
  • [48] An exponential functional of random walks
    Szabados, T
    Székely, B
    JOURNAL OF APPLIED PROBABILITY, 2003, 40 (02) : 413 - 426
  • [49] Random Maps and Their Scaling Limits
    Miermont, Gregory
    FRACTAL GEOMETRY AND STOCHASTICS IV, 2009, 61 : 197 - 224
  • [50] Critical scaling in standard biased random walks
    Anteneodo, C.
    Morgado, W. A. M.
    PHYSICAL REVIEW LETTERS, 2007, 99 (18)