Weak limits for quantum random walks

被引:167
|
作者
Grimmett, G
Janson, S
Scudo, PF
机构
[1] Univ Cambridge, Ctr Math Sci, Stat Lab, Cambridge CB3 0WB, England
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[3] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 02期
关键词
D O I
10.1103/PhysRevE.69.026119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We formulate and prove a general weak limit theorem for quantum random walks in one and more dimensions. With X-n denoting position at time n, we show that X-n/n converges weakly as n-->infinity to a certain distribution which is absolutely continuous and of bounded support. The proof is rigorous and makes use of Fourier transform methods. This approach simplifies and extends certain preceding derivations valid in one dimension that make use of combinatorial and path integral methods.
引用
收藏
页码:026119 / 1
页数:6
相关论文
共 50 条
  • [1] WEAK LIMITS FOR QUANTUM WALKS ON THE HALF-LINE
    Liu, Chaobin
    Petulante, Nelson
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (06)
  • [2] Quantum stochastic walks: A generalization of classical random walks and quantum walks
    Whitfield, James D.
    Rodriguez-Rosario, Cesar A.
    Aspuru-Guzik, Alan
    [J]. PHYSICAL REVIEW A, 2010, 81 (02):
  • [3] Weak Mixing of Random Walks on Groups
    Christophe Cuny
    [J]. Journal of Theoretical Probability, 2003, 16 : 923 - 933
  • [4] Weak mixing of random walks on groups
    Cuny, C
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2003, 16 (04) : 923 - 933
  • [5] A Crossover Between Open Quantum Random Walks to Quantum Walks
    Norio Konno
    Kaname Matsue
    Etsuo Segawa
    [J]. Journal of Statistical Physics, 190
  • [6] Relation between random walks and quantum walks
    Boettcher, Stefan
    Falkner, Stefan
    Portugal, Renato
    [J]. PHYSICAL REVIEW A, 2015, 91 (05)
  • [7] A Crossover Between Open Quantum Random Walks to Quantum Walks
    Konno, Norio
    Matsue, Kaname
    Segawa, Etsuo
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (12)
  • [8] One-dimensional three-state quantum walks: Weak limits and localization
    Ko, Chul Ki
    Segawa, Etsuo
    Yoo, Hyun Jae
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2016, 19 (04)
  • [9] Quantum walks on a random environment
    Yin, Yue
    Katsanos, D. E.
    Evangelou, S. N.
    [J]. PHYSICAL REVIEW A, 2008, 77 (02):
  • [10] Quantum Random Walks and Thermalisation
    Alexander C. R. Belton
    [J]. Communications in Mathematical Physics, 2010, 300 : 317 - 329