Weak limits for quantum random walks

被引:167
|
作者
Grimmett, G
Janson, S
Scudo, PF
机构
[1] Univ Cambridge, Ctr Math Sci, Stat Lab, Cambridge CB3 0WB, England
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[3] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 02期
关键词
D O I
10.1103/PhysRevE.69.026119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We formulate and prove a general weak limit theorem for quantum random walks in one and more dimensions. With X-n denoting position at time n, we show that X-n/n converges weakly as n-->infinity to a certain distribution which is absolutely continuous and of bounded support. The proof is rigorous and makes use of Fourier transform methods. This approach simplifies and extends certain preceding derivations valid in one dimension that make use of combinatorial and path integral methods.
引用
收藏
页码:026119 / 1
页数:6
相关论文
共 50 条
  • [31] Quantum Random Walks in One Dimension
    Konno, Norio
    [J]. QUANTUM INFORMATION PROCESSING, 2002, 1 (05) : 345 - 354
  • [32] Operator Random Walks and Quantum Oscillator
    Orlov, Yu. N.
    Sakbaev, V. Zh.
    Zavadsky, D. V.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (04) : 676 - 685
  • [33] Quantum random walks without walking
    Manouchehri, K.
    Wang, J. B.
    [J]. PHYSICAL REVIEW A, 2009, 80 (06):
  • [34] Quantum Random Walks in Free Space
    Eichelkraut, Toni
    Vetter, Christian
    Perez-Leija, Armando
    Christodoulides, Demetrios N.
    Szameit, Alexander
    [J]. 2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [35] Fluctuations of quantum random walks on circles
    Inui, N
    Konishi, Y
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2005, 3 (03) : 535 - 549
  • [36] Quantum to classical transition for random walks
    Brun, TA
    Carteret, HA
    Ambainis, A
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (13)
  • [37] Dynamic quantum Bernoulli random walks
    Guillotin-Plantard, Nadine
    Schott, Rene
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2008, 11 (02) : 213 - 229
  • [38] Quantum Random Walks in One Dimension
    Norio Konno
    [J]. Quantum Information Processing, 2002, 1 : 345 - 354
  • [39] Quantum random walks with decoherent coins
    Brun, TA
    Carteret, HA
    Ambainis, A
    [J]. PHYSICAL REVIEW A, 2003, 67 (03):
  • [40] Improved simulation of quantum random walks
    Küçük, U
    Say, ACC
    [J]. COMPUTER AND INFORMATION SICENCES - ISCIS 2005, PROCEEDINGS, 2005, 3733 : 937 - 946