Quantum Random Walks in One Dimension

被引:0
|
作者
Norio Konno
机构
[1] Yokohama National University,Department of Applied Mathematics, Faculty of Engineering
来源
关键词
Quantum random walk; the Hadamard walk; limit theorems;
D O I
暂无
中图分类号
学科分类号
摘要
This letter treats the quantum random walk on the line determined by a 2 × 2 unitary matrix U. A combinatorial expression for the mth moment of the quantum random walk is presented by using 4 matrices, P, Q, R and S given by U. The dependence of the mth moment on U and initial qubit state ϕ is clarified. A new type of limit theorems for the quantum walk is given. Furthermore necessary and sufficient conditions for symmetry of distribution for the quantum walk is presented. Our results show that the behavior of quantum random walk is striking different from that of the classical ramdom walk.
引用
收藏
页码:345 / 354
页数:9
相关论文
共 50 条
  • [1] Quantum Random Walks in One Dimension
    Konno, Norio
    [J]. QUANTUM INFORMATION PROCESSING, 2002, 1 (05) : 345 - 354
  • [2] Random walks on random partitions in one dimension
    Nadler, W
    Huang, T
    Stein, DL
    [J]. PHYSICAL REVIEW E, 1996, 54 (04): : 4037 - 4047
  • [3] Limit theorems and absorption problems for quantum random walks in one dimension
    Konno, N
    [J]. QUANTUM INFORMATION & COMPUTATION, 2002, 2 : 578 - 595
  • [4] Absorption problems for quantum walks in one dimension
    Konno, N
    Namiki, T
    Soshi, T
    Sudbury, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (01): : 241 - 253
  • [5] Disordered quantum walks in one lattice dimension
    Ahlbrecht, Andre
    Scholz, Volkher B.
    Werner, Albert H.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (10)
  • [6] THE FRACTAL PROPERTIES OF GENERALIZED RANDOM-WALKS IN ONE DIMENSION
    POWLES, JG
    RICKAYZEN, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (14): : 2793 - 2812
  • [7] On strict monotonicity of the speed for excited random walks in one dimension
    Holmes, Mark
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 1 - 7
  • [8] A path integral approach for disordered quantum walks in one dimension
    Konno, N
    [J]. FLUCTUATION AND NOISE LETTERS, 2005, 5 (04): : L529 - L537
  • [9] Quantum walks with tuneable self-avoidance in one dimension
    Elizabeth Camilleri
    Peter P. Rohde
    Jason Twamley
    [J]. Scientific Reports, 4
  • [10] Quantum walks with tuneable self-avoidance in one dimension
    Camilleri, Elizabeth
    Rohde, Peter P.
    Twamley, Jason
    [J]. SCIENTIFIC REPORTS, 2014, 4