Quantum Random Walks and Thermalisation

被引:0
|
作者
Alexander C. R. Belton
机构
[1] Lancaster University,Department of Mathematics and Statistics
来源
关键词
Quantum Random Walk; Maximal Abelian Subalgebra; Gauge Term; Faithful Normal State; Quantum Stochastic Differential Equation;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown how to construct quantum random walks with particles in an arbitrary faithful normal state. A convergence theorem is obtained for such walks, which demonstrates a thermalisation effect: the limit cocycle obeys a quantum stochastic differential equation without gauge terms. Examples are presented which generalise that of Attal and Joye (J Funct Anal 247:253–288, 2007).
引用
收藏
页码:317 / 329
页数:12
相关论文
共 50 条
  • [1] Quantum Random Walks and Thermalisation
    Belton, Alexander C. R.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 300 (02) : 317 - 329
  • [2] Quantum stochastic walks: A generalization of classical random walks and quantum walks
    Whitfield, James D.
    Rodriguez-Rosario, Cesar A.
    Aspuru-Guzik, Alan
    [J]. PHYSICAL REVIEW A, 2010, 81 (02):
  • [3] A Crossover Between Open Quantum Random Walks to Quantum Walks
    Norio Konno
    Kaname Matsue
    Etsuo Segawa
    [J]. Journal of Statistical Physics, 190
  • [4] Relation between random walks and quantum walks
    Boettcher, Stefan
    Falkner, Stefan
    Portugal, Renato
    [J]. PHYSICAL REVIEW A, 2015, 91 (05)
  • [5] A Crossover Between Open Quantum Random Walks to Quantum Walks
    Konno, Norio
    Matsue, Kaname
    Segawa, Etsuo
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (12)
  • [6] Quantum walks on a random environment
    Yin, Yue
    Katsanos, D. E.
    Evangelou, S. N.
    [J]. PHYSICAL REVIEW A, 2008, 77 (02):
  • [7] QUANTUM RANDOM-WALKS
    ACCARDI, L
    WATSON, GS
    [J]. LECTURE NOTES IN MATHEMATICS, 1989, 1396 : 73 - 88
  • [8] Open Quantum Random Walks
    S. Attal
    F. Petruccione
    C. Sabot
    I. Sinayskiy
    [J]. Journal of Statistical Physics, 2012, 147 : 832 - 852
  • [9] Hyperfinite quantum random walks
    Gudder, S
    [J]. CHAOS SOLITONS & FRACTALS, 1996, 7 (05) : 669 - 679
  • [10] Open Quantum Random Walks
    Attal, S.
    Petruccione, F.
    Sabot, C.
    Sinayskiy, I.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (04) : 832 - 852