WEAK LIMITS FOR QUANTUM WALKS ON THE HALF-LINE

被引:5
|
作者
Liu, Chaobin [1 ]
Petulante, Nelson [1 ]
机构
[1] Bowie State Univ, Dept Math, Bowie, MD 20715 USA
关键词
Weak limit; quantum walks on the half-line; general condition at the boundary; localization; THEOREMS;
D O I
10.1142/S0219749913500548
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a discrete two-state quantum walk (QW) on the half-line with a general condition at the boundary, we formulate and prove a weak limit theorem describing the terminal behavior of its transition probabilities. In this context, localization is possible even for a walk predicated on the assumption of homogeneity. For the Hadamard walk on the half-line, the weak limit is shown to be independent of the initial coin state and to exhibit no localization.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Quantum intermittency for sparse CMV matrices with an application to quantum walks on the half-line
    Damanik, David
    Erickson, Jon
    Fillman, Jake
    Hinkle, Gerhardt
    Vu, Alan
    [J]. JOURNAL OF APPROXIMATION THEORY, 2016, 208 : 59 - 84
  • [2] Weak limits for quantum random walks
    Grimmett, G
    Janson, S
    Scudo, PF
    [J]. PHYSICAL REVIEW E, 2004, 69 (02): : 026119 - 1
  • [3] QUANTUM MOTION ON A HALF-LINE CONNECTED TO A PLANE
    EXNER, P
    SEBA, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (02) : 386 - 391
  • [4] Phase transitions for edge-reinforced random walks on the half-line
    Akahori, Jiro
    Collevecchio, Andrea
    Takei, Masato
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [5] Open Quantum Random Walks on the Half-Line: The Karlin–McGregor Formula, Path Counting and Foster’s Theorem
    Thomas S. Jacq
    Carlos F. Lardizabal
    [J]. Journal of Statistical Physics, 2017, 169 : 547 - 594
  • [6] Boundary conditions in quantum mechanics on the discretized half-line
    Kunstatter, Gabor
    Louko, Jorma
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (30)
  • [7] On quantum extensions of semigroups of Brownian motion on a half-line
    Bhat, BVR
    Fagnola, F
    Sinha, KB
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 1996, 4 (01) : 13 - 28
  • [8] Open Quantum Random Walks on the Half-Line: The Karlin-McGregor Formula, Path Counting and Foster's Theorem
    Jacq, Thomas S.
    Lardizabal, Carlos F.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2017, 169 (03) : 547 - 594
  • [9] QUANTUM-MECHANICS ON THE HALF-LINE USING PATH INTEGRALS
    CLARK, TE
    MENIKOFF, R
    SHARP, DH
    [J]. PHYSICAL REVIEW D, 1980, 22 (12): : 3012 - 3016
  • [10] Three examples of quantum dynamics on the half-line with smooth bouncing
    Almeida, C. R.
    Bergeron, H.
    Gazeau, J-P
    Scardua, A. C.
    [J]. ANNALS OF PHYSICS, 2018, 392 : 206 - 228