Persistent Random Walks. II. Functional Scaling Limits

被引:2
|
作者
Cenac, Peggy [1 ]
Le Ny, Arnaud [3 ]
de Loynes, Basile [2 ]
Offret, Yoann [1 ]
机构
[1] Univ Bourgogne Franche Comte, CNRS, IMB, UMR 5584, F-21000 Dijon, France
[2] Univ Bretagne Loire, Ensai, Campus Ker Lann, F-35172 Bruz, France
[3] Univ Paris Est, CNRS, LAMA, UMR 8050, F-94010 Creteil, France
关键词
Persistent random walks; Functional scaling limits; Arcsine Lamperti laws; Directionally reinforced random walks; Levy walks; Anomalous diffusions; TIME RANDOM-WALKS; THEOREMS;
D O I
10.1007/s10959-018-0852-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe the scaling limits of the persistent random walks (PRWs) for which the recurrence has been characterized in Cenac et al. (J. Theor. Probab. 31(1):232-243, 2018). We highlight a phase transition phenomenon with respect to the memory: depending on the tails of the persistent time distributions, the limiting process is either Markovian or non-Markovian. In the memoryless situation, the limits are classical strictly stable Levy processes of infinite variations, but the critical Cauchy case and the asymmetric situation we investigate fill some lacunae of the literature, in particular regarding directionally reinforced random walks (DRRWs). In the non-Markovian case, we extend the results of Magdziarz et al. (Stoch. Process. Appl. 125(11):4021-4038, 2015) on Levy walks (LWs) to a wider class of PRWs without renewal patterns. Finally, we clarify some misunderstanding regarding the marginal densities in the framework of DRRWs and LWs and compute them explicitly in connection with the occupation times of Lamperti's stochastic processes.
引用
收藏
页码:633 / 658
页数:26
相关论文
共 50 条
  • [31] Spherically symmetric random walks. III. Polymer adsorption at a hyperspherical boundary
    Bender, Carl M.
    Boettcher, Stefan
    Meisinger, Peter N.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 54 (01):
  • [32] Correlated continuous-time random walks-scaling limits and Langevin picture
    Magdziarz, Marcin
    Metzler, Ralf
    Szczotka, Wladyslaw
    Zebrowski, Piotr
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
  • [33] SCALING LIMITS OF RANDOM WALKS, HARMONIC PROFILES, AND STATIONARY NONEQUILIBRIUM STATES IN LIPSCHITZ DOMAINS
    Dello Schiavo, Lorenzo
    Portinale, Lorenzo
    Sau, Federico
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (02): : 1789 - 1845
  • [34] Scaling for random walks on Eden trees
    Reis, FDAA
    PHYSICAL REVIEW E, 1996, 54 (04) : R3079 - R3081
  • [35] Scaling random walks on arbitrary sets
    Harris, SC
    Williams, D
    Sibson, R
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 125 : 535 - 544
  • [36] Scaling for random walks on Sierpinski carpets
    Departamento de Física, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, CEP 24210-340 Niterói, RJ, Brazil
    Phys Lett Sect A Gen At Solid State Phys, 5-6 (239-242):
  • [37] A scaling law for random walks on networks
    Perkins, Theodore J.
    Foxall, Eric
    Glass, Leon
    Edwards, Roderick
    NATURE COMMUNICATIONS, 2014, 5
  • [38] Scaling for random walks on Sierpinski carpets
    Reis, FDA
    PHYSICS LETTERS A, 1996, 214 (5-6) : 239 - 242
  • [39] SCALING IN BIASED RANDOM-WALKS
    HALLEY, JW
    NAKANISHI, H
    SUNDARARAJAN, R
    PHYSICAL REVIEW B, 1985, 31 (01): : 293 - 298
  • [40] Scaling for random walks on Eden trees
    Phys Rev E., 4-A pt A (R3079):